Quantum approximate counting

A.J. Cornelissen
QuSoft, University of Amsterdam

November 9th, 2021

CWI

Quantum computing

Quantum computing

Ingredients:

Quantum computing

Ingredients:

(1) State space: Hilbert space \mathcal{H}.

Quantum computing

Ingredients:

(1) State space: Hilbert space \mathcal{H}.
(2) Initial state: $\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.

Quantum computing

Ingredients:
(1) State space: Hilbert space \mathcal{H}.
(2) Initial state: $\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Unitary operations: U_{1}, \ldots, U_{T} acting on \mathcal{H}.

Quantum computing

Ingredients:
(1) State space: Hilbert space \mathcal{H}.
(2) Initial state: $\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Unitary operations: U_{1}, \ldots, U_{T} acting on \mathcal{H}.
(1) Measurement: Orthogonal decomposition of \mathcal{H} into subspaces $S_{o} \subseteq \mathcal{H}$:

$$
\mathbb{P}(o)=\| \Pi_{o}\left|\psi_{T}\right\rangle \|^{2}
$$

Quantum computing

Ingredients:
(1) State space: Hilbert space \mathcal{H}.
(2) Initial state: $\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Unitary operations: U_{1}, \ldots, U_{T} acting on \mathcal{H}.
(1) Measurement: Orthogonal decomposition of \mathcal{H} into subspaces $S_{o} \subseteq \mathcal{H}$:

$$
\mathbb{P}(o)=\| \Pi_{o}\left|\psi_{T}\right\rangle \|^{2}
$$

Typically, we have two types of unitaries:
(1) Input-dependent unitary, O.
(2) Input-independent unitaries, U_{j}.

Quantum computing

Ingredients:
(1) State space: Hilbert space \mathcal{H}.
(2) Initial state: $\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Unitary operations: U_{1}, \ldots, U_{T} acting on \mathcal{H}.
(1) Measurement: Orthogonal decomposition of \mathcal{H} into subspaces $S_{o} \subseteq \mathcal{H}$:

$$
\mathbb{P}(o)=\| \Pi_{o}\left|\psi_{T}\right\rangle \|^{2}
$$

Typically, we have two types of unitaries:
(1) Input-dependent unitary, O.
(2) Input-independent unitaries, U_{j}.

$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{O}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto}\left|\psi_{3}\right\rangle \stackrel{O}{\mapsto} \cdots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.

Quantum counting

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$. Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$.

Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.
(3) How many times do we need to evaluate f ?

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$.

Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.
(3) How many times do we need to evaluate f ?
(1) Classically: $\Theta(n)$ function evaluations.

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$.

Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.
(3) How many times do we need to evaluate f ?
(1) Classically: $\Theta(n)$ function evaluations.
(2) Quantumly:
(1) Hilbert space $\mathcal{H}=\mathbb{C}^{n}$.
(2) Input-dependent unitary:
$O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) $\Theta(\sqrt{t(n-t+1)})$ evaluations of O_{f}.

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$.

Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.
(3) How many times do we need to evaluate f ?
(1) Classically: $\Theta(n)$ function evaluations.
(2) Quantumly:
(1) Hilbert space $\mathcal{H}=\mathbb{C}^{n}$.
(2) Input-dependent unitary:
$O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) $\Theta(\sqrt{ } t(n-t+1))$ evaluations of O_{f}.

Quantum counting

(1) Let $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) Let threshold $t \in\{1,2, \ldots, n\}$.

Distinguish between:
(1) $\left|f^{(-1)}(1)\right| \geq t$,
(2) $\left|f^{(-1)}(1)\right|<t$.
(3) How many times do we need to evaluate f ?
(1) Classically: $\Theta(n)$ function evaluations.
(2) Quantumly:
(1) Hilbert space $\mathcal{H}=\mathbb{C}^{n}$.
(2) Input-dependent unitary:
$O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) $\Theta(\sqrt{t(n-t+1)})$ evaluations of O_{f}.

(9) Goal for today: look at the mathematics behind this phenomenon.

Jordan's lemma

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(9) Let $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.

Jordan's lemma

Theorem: (Jordan's lemma)
(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(9) Let $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.

Theorem: (Jordan's lemma)

(1) U acts as I on $(A \cap B) \oplus\left(A^{\perp} \cap B^{\perp}\right)$.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(9) Let $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.

Theorem: (Jordan's lemma)
(1) U acts as I on $(A \cap B) \oplus\left(A^{\perp} \cap B^{\perp}\right)$.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(2) U acts as $-I$ on $\left(A^{\perp} \cap B\right) \oplus\left(A \cap B^{\perp}\right)$.
(9) Let $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.

Theorem: (Jordan's lemma)
(1) U acts as I on $(A \cap B) \oplus\left(A^{\perp} \cap B^{\perp}\right)$.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(2) U acts as $-I$ on $\left(A^{\perp} \cap B\right) \oplus\left(A \cap B^{\perp}\right)$.
(9) Let $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.
(3) The remainder of \mathcal{H} is decomposed into 2-dimensional rotation spaces.

Jordan's lemma

(1) Let \mathcal{H} be a Hilbert space.
(2) Let $A, B \subseteq \mathcal{H}$ be subspaces.

Theorem: (Jordan's lemma)
(1) U acts as I on $(A \cap B) \oplus\left(A^{\perp} \cap B^{\perp}\right)$.
(3) Let $|\psi\rangle \in A^{\perp}$, with $\||\psi\rangle \|=1$.
(2) U acts as $-I$ on $\left(A^{\perp} \cap B\right) \oplus\left(A \cap B^{\perp}\right)$.
(3) The remainder of \mathcal{H} is decomposed into 2-dimensional rotation spaces.

Peak diagrams

(1) Given $\mathcal{H}, A, B,|\psi\rangle$.

Peak diagrams

(c) Given $\mathcal{H}, A, B,|\psi\rangle$.
(2) Let Φ be the random variable with $\mathbb{P}[\Phi=\phi]=\| \Pi_{R_{\phi}}|\psi\rangle \|^{2}$.

Peak diagrams

(1) Given $\mathcal{H}, A, B,|\psi\rangle$.
(2) Let Φ be the random variable with $\mathbb{P}[\Phi=\phi]=\| \Pi_{R_{\phi}}|\psi\rangle \|^{2}$.

Peak diagrams

(1) Given $\mathcal{H}, A, B,|\psi\rangle$.
(2) Let Φ be the random variable with $\mathbb{P}[\Phi=\phi]=\| \Pi_{R_{\phi}}|\psi\rangle \|^{2}$.
(0) Phase estimation:

One can sample from this binned distribution with $\mathcal{O}(1 / \varepsilon)$ calls to $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)$.

Negation

Negation

Given $\mathcal{H}, A, B,|\psi\rangle$:
(1) Let $A^{\prime}=(A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.
(2) Let $B^{\prime}=B^{\perp}$.

Negation

Given $\mathcal{H}, A, B,|\psi\rangle$:
(1) Let $A^{\prime}=(A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.
(2) Let $B^{\prime}=B^{\perp}$.

Then,

$$
\begin{aligned}
U^{\prime} & =\left(2 \Pi_{B^{\prime}}-I\right)\left(2 \Pi_{A^{\prime}}-I\right) \\
& =\left(2 \Pi_{\left(B^{\prime}\right)^{\perp}}-I\right)\left(2 \Pi_{\left(A^{\prime}\right) \perp}-I\right) \\
& =-\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)(2|\psi\rangle\langle\psi|-I) \\
& =-U(2|\psi\rangle\langle\psi|-I) .
\end{aligned}
$$

Negation

Given $\mathcal{H}, A, B,|\psi\rangle$:
(1) Let $A^{\prime}=(A \oplus \operatorname{Span}\{|\psi\rangle\})^{\perp}$.

Then,

$$
\begin{aligned}
U^{\prime} & =\left(2 \Pi_{B^{\prime}}-I\right)\left(2 \Pi_{A^{\prime}}-I\right) \\
& =\left(2 \Pi_{\left.\left(B^{\prime}\right)^{\perp}-I\right)\left(2 \Pi_{\left(A^{\prime}\right) \perp}-I\right)}\right. \\
& =-\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)(2|\psi\rangle\langle\psi|-I) \\
& =-U(2|\psi\rangle\langle\psi|-I) .
\end{aligned}
$$

Normal $X=\Phi$
Negated $X=\Phi^{\prime}$

Characteristic function

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.

Normal $X=Q$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Normal $X=Q$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Normal $X=Q$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Normal $X=Q$ Negated $X=Q^{\prime}$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Normal $X=Q$ Negated $X=Q^{\prime}$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.

$$
\mathbb{P}\left[Q=q^{*}\right]=\lim _{q \rightarrow q^{*}} \chi(q)\left(q-q^{*}\right)
$$

(2) Characteristic function:

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Normal $X=Q$
Negated $X=Q^{\prime}$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

$$
\mathbb{P}\left[Q=q^{*}\right]=\lim _{q \rightarrow q^{*}} \chi(q)\left(q-q^{*}\right)
$$

Let $\chi:[0,1] \rightarrow \mathbb{R}$, $\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}$

Main result:

$$
\chi^{\prime}(q)=\frac{1}{q(q-1) \chi(q)} .
$$

Normal $X=Q$
Negated $X=Q^{\prime}$

Characteristic function

(1) Let $Q=\sin ^{2}(\Phi / 2)$.
(2) Characteristic function:

$$
\mathbb{P}\left[Q=q^{*}\right]=\lim _{q \rightarrow q^{*}} \chi(q)\left(q-q^{*}\right)
$$

Let $\chi:[0,1] \rightarrow \mathbb{R}$,
Main result:

$$
\chi(q)=\sum_{j} \frac{p_{j}}{q-q_{j}}
$$

$$
=\langle\psi|\left(\Pi_{A^{\perp}} \Pi_{B^{\perp}} \Pi_{A^{\perp}}-(1-q) I\right)^{-1}|\psi\rangle .
$$

$$
\chi^{\prime}(q)=\frac{1}{q(q-1) \chi(q)}
$$

Normal $X=Q$
Negated $X=Q^{\prime}$

Recap

Recap

Recap

$$
Q={\underset{\sim}{\sin }}^{2}(\Phi / 2)
$$

Recap

$$
Q=\xrightarrow{\sin ^{2}}(\Phi / 2) \quad \chi(q)=\sum_{j=1}^{k} \frac{p_{j}}{q-q_{j}}
$$

Recap

$$
Q=\xrightarrow{\sin ^{2}}(\Phi / 2) \quad \chi(q)=\sum_{j=1}^{k} \frac{p_{j}}{q-q_{j}}
$$

Recap

$$
Q=\xrightarrow{\sin ^{2}}(\Phi / 2) \quad \chi(q)=\sum_{j=1}^{k} \frac{p_{j}}{q-q_{j}}
$$

Recap

$$
Q=\xrightarrow{\sin ^{2}(\Phi / 2)} \quad \chi(q)=\sum_{j=1}^{k} \frac{p_{j}}{q-q_{j}}
$$

Application to quantum counting

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:

(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:
(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:
(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:
(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:

$$
\chi(q)=\frac{\frac{s}{n}}{q}+\frac{1-\frac{s}{n}}{q-1}
$$

(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

Recall:

(1) $f:\{1,2, \ldots, n\} \rightarrow\{0,1\}$.
(2) $O_{f}:|j\rangle \mapsto(-1)^{f(j)}|j\rangle$.
(3) Let's write $s=\left|f^{(-1)}(1)\right|$.

Let:
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $A=\{0\}$.
(3) $B=\operatorname{Span}\{|j\rangle: f(j)=0\}$.
(9) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Then:
(1) $U=\left(2 \Pi_{B}-I\right)\left(2 \Pi_{A}-I\right)=-O_{f}$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.

Application to quantum counting

(1) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.
(3) $\mathbb{P}\left[\Phi^{\prime}=2 \arcsin \sqrt{\frac{5}{n}}\right]=1$.

Application to quantum counting

(1) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.
(3) $\mathbb{P}\left[\Phi^{\prime}=2 \arcsin \sqrt{\frac{5}{n}}\right]=1$.

Application to quantum counting

(1) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.
(3) $\mathbb{P}\left[\Phi^{\prime}=2 \arcsin \sqrt{\frac{5}{n}}\right]=1$.

Phase estimation:
With $\mathcal{O}(1 / \varepsilon)$ calls to U^{\prime}, we can sample from Φ^{\prime} up to precision ε.

Application to quantum counting

(1) $|\psi\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(2) $U^{\prime}=O_{f}(2|\psi\rangle\langle\psi|-I)$.
(3) $\mathbb{P}\left[\Phi^{\prime}=2 \arcsin \sqrt{\frac{5}{n}}\right]=1$.

Phase estimation:
With $\mathcal{O}(1 / \varepsilon)$ calls to U^{\prime}, we can sample from Φ^{\prime} up to precision ε.

$$
\varepsilon=\arcsin \left(\sqrt{\frac{t}{n}}\right)-\arcsin \left(\sqrt{\frac{t-1}{n}}\right)^{\text {Thus, }} \Leftrightarrow \frac{1}{\varepsilon}=\mathcal{O}(\sqrt{t(n-t+1)}) .
$$

Summary

Summary

© Quantum computing \& Quantum counting

Summary

- Quantum computing \& Quantum counting
(3) Jordan's lemma \& Peak diagrams

Summary

(1) Quantum computing \& Quantum counting
(2) Jordan's lemma \& Peak diagrams
(3) Negation \& Characteristic function

Summary

(1) Quantum computing \& Quantum counting
(2) Jordan's lemma \& Peak diagrams
(3) Negation \& Characteristic function
(9) Application to quantum counting

Summary

(1) Quantum computing \& Quantum counting
(2) Jordan's lemma \& Peak diagrams
(3) Negation \& Characteristic function
(9) Application to quantum counting

> Thanks for your attention! arjan@cwi.nl

