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Decision trees

In general:

1 Rooted tree.

2 Every node has a decision rule.

3 Leafs are labeled by outputs.

For the purposes of this talk:

1 Input is a bit string x ∈ {0, 1}n,
2 Nodes are single bit queries.

3 Decision tree defines f : {0, 1}n → A.

Examples:

1 AND-decision tree.

2 PARITY -decision tree.
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Decision tree measures

Measures:

1 depth(T ) – Depth
Length of the longest path.

2 size(T ) – Size
Number of decision nodes.

3 rank(T ) – Rank
Depth of largest full binary subtree.

4 G (T ) – Guessing complexity

C – Red-black coloring

G (C ) = max
path P

∑
e∈P

[C (e) = red]

G (T ) = min
C

G (C ).
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Function measures

We can lift decision tree measures to function measures.

1 Let f : {0, 1}n → A.

2 Let m ∈ {depth, size, rank,G}.
3 m(f ) = min

T :T computes f
m(T ).

f AND PARITY

T

x1

0 x2

0 x3

0 1

x1

x2 x2

0 1 1 0

depth(f ) n n
size(f ) n 2n − 1
rank(f ) 1 n

G (f ) 1 n

Randomized measures:

1 Let T be a family of decision trees.
It approximately computes f , if
∀x , P

T∈RT
[T (x) = f (x)] ≥ 2

3 .

2 Let m ∈ {depth, size, rank,G},
rm(f ) = min

T approx. computes f
max
T∈T

m(f ).

3 Can make a big difference!

∃f : rdepth(f ) ≪ depth(f )
[SW86;ABB+17;MRS18]
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Results

Our results:

1 Guessing complexity equals rank.

Answers open question from [LL16].

2 Separation between rank and
randomized rank.

∃f : rrank(f ) ≪ rank(f ).
Proof via Prover-Delayer games.
[PI00]

3 Improve best-known construction for
quantum query algorithms from
decision trees.

AND-OR tree

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x16

rrank(f ) = O(n0.753...) [SW86],
rank(f ) = n+2

3 = Θ(n).
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Decision tree to quantum algorithm – overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.

Prior work:
1 O(

√
G (T )depth(T ))-query algorithm.

Iteratively use minimum finding to find first red
edge [LL16].
Direct span program construction [BT20].

Requires weight assignment to the edges.
Recovers O(

√
G(T )depth(T )).

Open question: better weight assigments?

Time-efficient implementation [BTT21].

2 Improved weights for the oracle identification
problem [Tag21].

Our contribution: we provide the optimal weight assignment.

x1

x3

a1 a2

x4

a3 x2

a4 a5

0 1

0 1 0 1

0 1

0 1

0 1 0 1

0 1

w1
0

w2
1

w3
0

w4
1

w5
0

w6
1

w7
0

w8
1
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Decision tree to quantum algorithm – optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.

1 Construction of [BT20]: Let

W+ = maxP
∑

e∈P we .

W− = maxP
∑

e∈P
1
we
.

C =
√
W+W−.

⇒ O(C )-query algorithm.

2 Optimal & constructive assignment.

3 Favorable whenever CL ≪ CR .

4 ⇒ O(
√

size(T ))-query algorithm.

5 ∃T :
√
size(T ) ≪

√
G (T )depth(T ).
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Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f ) ≪ rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Generalization to the non-binary input case?

2 Decision trees with more complicated decision rules?

Thanks for your attention!
cornelissen@irif.fr
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