Quantum algorithms through composition of graphs

Arjan Cornelissen¹

¹Simons Institute, University of California, Berkeley, California

March 26th, 2025

Goal: Design algorithm for boolean function *f* :

- $2 \mathcal{D} \subseteq \{0,1\}^n.$

Goal: Design algorithm for boolean function *f* :

- $2 \mathcal{D} \subseteq \{0,1\}^n.$

Method: Two types of frameworks:

 Quantum walks.
 Unification: [AGJ21].

 Span programs / adversary bound. Unification: [This work].

Goal: Design algorithm for boolean function *f* :

- $\ 2 \ \ \mathcal{D} \subseteq \{0,1\}^n.$

Method: Two types of frameworks:

- Quantum walks.
 Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].

Quantum algorithm

Goal: Design algorithm for boolean function *f* :

- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

Method: Two types of frameworks:

Goal: Design algorithmfor boolean function f:f: $\mathcal{D} \to \{0, 1\}.$ $\mathcal{D} \subseteq \{0, 1\}^n.$ Method: Two types offrameworks:

 Quantum walks.
 Unification: [AGJ21].

 Span programs / adversary bound. Unification: [This work].

Complexity measure relations for total boolean functions

Complexity measure relations for total boolean functions

Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} . • Hilbert space: \mathcal{H} .

- Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.

- Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.

- Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

- Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- **Input-independent subspace**: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.
- Positive vs. negative inputs:

- Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- **Input-independent subspace**: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

$${egin{array}{lll} {{\mathcal S} pan \ program: } {\mathcal P} = ({\mathcal H}, x \mapsto {\mathcal H}(x), {\mathcal K}, \ket{w_0}) \ { ext{on}} \ {\mathcal D}. \end{array}}$$

- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- **Input-independent subspace**: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

1
$$f: \mathcal{D} \to \{0, 1\}, f(x) = 1 \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x).$$

2 $w_+(x, \mathcal{P}) = \min\{||w\rangle||^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
3 $w_-(x, \mathcal{P}) = \min\{||w\rangle||^2 : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_0 | w \rangle = 1\}.$

$${egin{array}{lll} {{\mathcal S}pan}\ program:\ {\mathcal P}=({\mathcal H},x\mapsto {\mathcal H}(x),{\mathcal K},\ket{w_0}) \ { ext{on}}\ {\mathcal D}. \end{array}$$

- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- **Input-independent subspace**: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

f:
$$\mathcal{D} \to \{0,1\}, f(x) = 1 \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x).$$
 w₊(x, \mathcal{P}) = min{ $||w\rangle||^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)$ }.
 w₋(x, \mathcal{P}) = min{ $||w\rangle||^2 : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_0 | w\rangle = 1$ }.
 C(\mathcal{P}) = $\sqrt{\max_{x \in f^{-1}(0)} w_-(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_+(x, \mathcal{P})}.$

$${egin{array}{lll} {{\mathcal S}{\mathcal p}{an}\ {\mathcal P}}=({\mathcal H},x\mapsto {\mathcal H}(x),{\mathcal K},\ket{{{\mathsf w}_0}}) \ {{\mathsf on}\ }{\mathcal D}. \end{array}}$$

- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in D, H(x) \subseteq H$.
- Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

1
$$f: \mathcal{D} \to \{0, 1\}, f(x) = 1 \Leftrightarrow |w_0\rangle \in \mathcal{K} + \mathcal{H}(x).$$

2 $w_+(x, \mathcal{P}) = \min\{||w\rangle||^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
3 $w_-(x, \mathcal{P}) = \min\{||w\rangle||^2 : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_0 | w \rangle = 1\}.$
4 $C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_-(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_+(x, \mathcal{P})}.$
5 Thm: $Q(f; 2\Pi_{\mathcal{H}(x)} - I) = O(C(\mathcal{P}))$ [Rei11].

Graph G = (V, E), resistances $r : E \rightarrow [0, \infty]$, $s, t \in V$.

Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$. **•** Flow: $f : E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$. **•** Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.

- Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$. **a** Flow: $f : E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$. **b** Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
 - Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = \delta_{v,s} - \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.

Graph
$$G = (V, E)$$
, resistances $r : E \to [0, \infty]$, $s, t \in V$
a Flow: $f : E \to \mathbb{C}$.
Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$,
 $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
b Circulation: flow f with $\forall v \in V$,
 $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = 0$.
Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
b Unit st-flow: flow f with $\forall v \in V$,
 $\sum_{v \in A^+(v)} f_e - \sum_{v \in A^-(v)} f_e = 0$.
 $f = \delta$

 $\frac{\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = \delta_{v,s} - \delta_{v,t}}{\text{Unit st-flow subspace: } \mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G.}$

• Effective resistance:
$$R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$$
.

Graph
$$G = (V, E)$$
, resistances $r : E \to [0, \infty]$, $s, t \in V$
Flow: $f : E \to \mathbb{C}$.
Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$,
 $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
Circulation: flow f with $\forall v \in V$,
 $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = 0$.
Circulation space: $C_{G,r} \subseteq \mathcal{H}_G$.
Unit st-flow: flow f with $\forall v \in V$,
 $\sum_{v \in N^+(v)} f_e - \sum_{v \in N^-(v)} f_e = \delta_{v,s} - \delta_{v,t}$.
Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.

- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.
- Subgraph: $x \in \{0,1\}^E \mapsto G(x) \mapsto \mathcal{H}_{G(x)} \subseteq \mathcal{H}_G$.

Graph compositions [This work]
- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

 - $\mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e$, with $r_e = ||w_0^e\rangle||^2$.
 - $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

١

 $|W_0\rangle = \mathcal{C}(|T_{G,s,t,r}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\begin{array}{l} \textcircled{0} \quad \mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x) \\ \textcircled{0} \quad \mathcal{E} : \mathcal{H}_G \to \mathcal{H}, |e\rangle \mapsto |w_0^e\rangle / \||w_0^e\rangle\|. \\ \textcircled{0} \quad \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = \||w_0^e\rangle\|^2 \\ \textcircled{0} \quad |w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle). \end{array}$$

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\begin{array}{l} @ \ \mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x) \\ @ \ \mathcal{E} : \mathcal{H}_G \to \mathcal{H}, |e\rangle \mapsto |w_0^e\rangle / \||w_0^e\rangle\|. \\ @ \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = \||w_0^e\rangle\|^2. \\ @ \ |w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle). \end{array}$$

Main theorem: For all $x \in \mathcal{D}$,

Positive witness size:

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e$$

$$\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$$

•
$$\mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e$$
, with $r_e = |||w_0^e\rangle||^2$.

$$|W_0\rangle = \mathcal{E}(|f_{G,s,t,r}\rangle).$$

Main theorem: For all $x \in \mathcal{D}$,

Positive witness size:

$$w_+(x,\mathcal{P})=R_{G,s,t,r^+}.$$

0

Graph composition:

- **1** Undirected graph G = (V, E).
- 2 Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e \mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x) \mathcal{E} : \mathcal{H}_G \to \mathcal{H}, |e\rangle \mapsto |w_0^e\rangle / |||w_0^e\rangle||. \mathcal{K} = \mathcal{E}(\mathcal{C}_{G, t}) \oplus \bigoplus_{e \in E} \mathcal{K}_{ee} \text{ with } r_e = |||w_0^e\rangle||^2.$$

$$|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$$

Main theorem: For all $x \in \mathcal{D}$,

∥.

Positive witness size:

$$w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$$

Negative witness size $w_-(x, \mathcal{P})$:

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\begin{array}{l} \bullet \ \mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e \\ \bullet \ \mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x) \\ \bullet \ \mathcal{E} : \mathcal{H}_G \to \mathcal{H}, |e\rangle \mapsto |w_0^e\rangle / \||w_0^e\rangle\|. \\ \bullet \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = \||w_0^e\rangle\|^2. \\ \bullet \ |w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle). \end{array}$$

Main theorem: For all $x \in \mathcal{D}$,

Positive witness size:

$$w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$$

Negative witness size $w_-(x, \mathcal{P})$:

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :
- $\begin{array}{l} \bullet \mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_{e} \\ \bullet \mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_{e}(x) \\ \bullet \mathcal{E} : \mathcal{H}_{G} \to \mathcal{H}, |e\rangle \mapsto |w_{0}^{e}\rangle / \||w_{0}^{e}\rangle\|. \\ \bullet \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_{e}, \text{ with } r_{e} = \||w_{0}^{e}\rangle\|^{2}. \\ \bullet |w_{0}\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle). \end{array}$

Main theorem: For all $x \in \mathcal{D}$,

Positive witness size:

 $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$ Negative witness size $w_-(x, \mathcal{P})$:

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .
- *Formally:* Span program \mathcal{P} on \mathcal{D} :

$$\begin{array}{l} \boldsymbol{\mathcal{H}} = \bigoplus_{e \in E} \mathcal{H}_{e} \\ \boldsymbol{\mathcal{H}}(x) = \bigoplus_{e \in E} \mathcal{H}_{e}(x) \\ \boldsymbol{\mathcal{S}} : \mathcal{H}_{G} \to \mathcal{H}, |e\rangle \mapsto |w_{0}^{e}\rangle / \||w_{0}^{e}\rangle\|. \\ \boldsymbol{\mathcal{S}} : \mathcal{H}_{G} \to \mathcal{H}, |e\rangle \mapsto |w_{0}^{e}\rangle / \||w_{0}^{e}\rangle\|. \\ \boldsymbol{\mathcal{S}} : \mathcal{H}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_{e}, \text{ with } r_{e} = \||w_{0}^{e}\rangle\|^{2}. \\ \boldsymbol{\mathcal{S}} : |w_{0}\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle). \end{array}$$

Main theorem: For all $x \in \mathcal{D}$,

Positive witness size:

$$w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$$

Negative witness size $w_-(x, \mathcal{P})$:

$$w_{-}(x,\mathcal{P})=R_{G,s,t,r^{-}}^{-1}.$$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

Theorem: For all $x \in \mathcal{D}$.

- **1** Let P be a path from s to t: $w_+(x,\mathcal{P}) \leq \sum_{e \in P} w_+(x,\mathcal{P}_e).$
- 2 Let C be a cut between s and t: $w_{-}(x,\mathcal{P}) \leq \sum_{e \in \mathcal{C}} w_{-}(x,\mathcal{P}_{e}).$

7/13

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$
- Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e}).$

Properties:

- Simpler (less-powerful) version.
- Still powerful enough for many applications.

 $\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

$$f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

• $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$

 $\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$ $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$ Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$ $\Rightarrow w_+(x, \mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$

Three operations: (each is called $O(C(\mathcal{P}))$ times)

$$\begin{array}{l} \bullet \quad 2\Pi_{\mathcal{H}(x)} - I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^e(x)} - I). \\ \bullet \quad 2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} - I). \\ \bullet \quad C_{|w_0\rangle} : |\bot\rangle \mapsto |w_0\rangle / ||w_0\rangle||. \end{array}$$

Three operations: (each is called $O(C(\mathcal{P}))$ times)

1
$$2\Pi_{\mathcal{H}(x)} - I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^e(x)} - I).$$
2 $\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} - I).$
3 $C_{|w_0\rangle} : |\bot\rangle \mapsto |w_0\rangle / ||w_0\rangle||.$

Bottleneck: Implementation of $R_{\mathcal{C}_{G,r}} := 2 \prod_{\mathcal{C}_{G,r}} - I$.

Three operations: (each is called $O(C(\mathcal{P}))$ times)

$$\begin{array}{l} \bullet \quad 2\Pi_{\mathcal{H}(x)} - I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^{e}(x)} - I). \\ \bullet \quad 2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^{e}} - I). \\ \bullet \quad C_{|w_{0}\rangle} : |\bot\rangle \mapsto |w_{0}\rangle / ||w_{0}\rangle||. \end{array}$$

Bottleneck: Implementation of $R_{C_{G,r}} := 2\Pi_{C_{G,r}} - I$. Decompositions:

• Tree decomposition:
$$C_{G,r} = \bigoplus_{j=1}^{k} C_{G|_{E_j},r|_{E_j}}$$
.

Three operations: (each is called $O(C(\mathcal{P}))$ times)

$$\begin{array}{l} \bullet \quad 2\Pi_{\mathcal{H}(x)} - I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^{e}(x)} - I). \\ \bullet \quad 2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^{e}} - I). \\ \bullet \quad C_{|w_{0}\rangle} : |\bot\rangle \mapsto |w_{0}\rangle / ||w_{0}\rangle||. \end{array}$$

Bottleneck: Implementation of $R_{C_{G,r}} := 2\Pi_{C_{G,r}} - I$. Decompositions:

• Tree decomposition:
$$C_{G,r} = \bigoplus_{j=1}^{k} C_{G|_{E_j},r|_{E_j}}$$
.

Parallel decomposition between v and w:
\$\mathcal{C}_{G,r} = \overline{\overline{j}=1}^{k} \mathcal{C}_{G|_{E_{j}},r|_{E_{j}}} \oplus \mathcal{E}(\mathcal{C}^{\perp}), with
\$\mathcal{C} = Span{\sum_{j=1}^{k} \frac{1}{||\mathcal{f}_{G|_{E_{j}},v,w,r|_{E_{j}}} \rangle || j \rangle\$} \le \mathcal{C}^{k}.
\$\mathcal{E} : |j \rangle\$ \rightarrow \frac{|\mathcal{f}_{G|_{E_{j}},v,w,r|_{E_{j}}}{||\mathcal{f}_{G|_{E_{j}},v,w,r|_{E_{j}}} \rangle\$].

 $E = E_1 \sqcup E_2 \sqcup E_3$

Three operations: (each is called $O(C(\mathcal{P}))$ times)

$$\begin{array}{l} \bullet \quad 2\Pi_{\mathcal{H}(x)} - I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^{e}(x)} - I). \\ \bullet \quad 2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^{e}} - I). \\ \bullet \quad C_{|w_{0}\rangle} : |\bot\rangle \mapsto |w_{0}\rangle / ||w_{0}\rangle||. \end{array}$$

Bottleneck: Implementation of $R_{C_{G,r}} := 2\Pi_{C_{G,r}} - I$. Decompositions:

• Tree decomposition:
$$C_{G,r} = \bigoplus_{j=1}^{k} C_{G|_{E_j},r|_{E_j}}$$
.

2 Parallel decomposition between v and w: $\mathcal{C}_{G,r} = \bigoplus_{j=1}^{k} \mathcal{C}_{G|_{E_j},r|_{E_j}} \oplus \mathcal{E}(\mathcal{C}^{\perp}), \text{ with}$ $\mathcal{C} = \text{Span}\{\sum_{j=1}^{k} \frac{1}{\||f_{G|_{E_j},v,w,r|_{E_j}}^{\min}\rangle\|} |j\rangle\} \subseteq \mathbb{C}^k.$ $\mathcal{E} : |j\rangle \mapsto \frac{|f_{G|_{E_j},v,w,r|_{E_j}}^{\min}\rangle}{\||f_{G|_{E_j},v,w,r|_{E_j}}^{\min}\rangle\|}.$

Always possible to decompose.

Arjan Cornelissen (Simons Institute)

Graph composition

 $E = E_1 \sqcup E_2 \sqcup E_3$
- **1** Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{j_1,...,j_d} = \{e\}.$

Tree-parallel decomposition tree

• Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e.,
 E_{j1},..., j_d = {e}.
- 2 Embed $|e\rangle = |j_1, j_2, \dots, j_d\rangle$.

Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e., *E*_{j1},...,j_d = {e}.

 Embed |e⟩ = |j₁, j₂,..., j_d⟩.
- **2** Circuit implementation of $R_{C_{G,r}}$:

Tree-parallel decomposition tree

Circuit implementation

• Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e., $E_{j_1,...,j_d} = \{e\}.$
- 2 Embed $|e\rangle = |j_1, j_2, \dots, j_d\rangle$.
- **2** Circuit implementation of $R_{C_{G,r}}$:
 - Every \mathcal{E}_j is a state-preparation operation.

Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e., $E_{j_1,...,j_d} = \{e\}.$
- 2 Embed $|e\rangle = |j_1, j_2, \dots, j_d\rangle$.
- **2** Circuit implementation of $R_{C_{G,r}}$:
 - Every \mathcal{E}_j is a state-preparation operation.
 - **2** Every U_j is:
 - 1 Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.

Tree-parallel decomposition tree

• Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e., $E_{j_1,...,j_d} = \{e\}.$
- 2 Embed $|e\rangle = |j_1, j_2, \dots, j_d\rangle$.

2 Circuit implementation of $R_{C_{G,r}}$:

- Every \mathcal{E}_j is a state-preparation operation.
- **2** Every U_j is:
 - 1 Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.
- **③** Both can be implemented with KP-trees:
 - $O \widetilde{O}(\log |E|) \text{ time,}$
 - $\widehat{O}(|E|) \text{ bits of QROM.}$

Tree-parallel decomposition tree

Tree-parallel decomposition tree:

- Every leaf is a single edge, i.e., $E_{j_1,...,j_d} = \{e\}.$
- 2 Embed $|e\rangle = |j_1, j_2, \dots, j_d\rangle$.

2 Circuit implementation of $R_{C_{G,r}}$:

- Every \mathcal{E}_j is a state-preparation operation.
- **2** Every U_j is:
 - 1 Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.
- **③** Both can be implemented with KP-trees:
 - $\underbrace{\widetilde{O}}(\log |E|) \text{ time,}$
 - $\widehat{O}(|E|) \text{ bits of QROM.}$
- Total cost:
 - $\underbrace{\widetilde{O}}_{\widetilde{O}}(d \log |E|) \text{ time,}$
 - $\widetilde{O}(d|E|) \text{ bits of QROM.}$

Tree-parallel decomposition tree

Analysis:

• $C(\mathcal{P}) \in O(\sqrt{n \log(n)}).$

Analysis:

Analysis:

Analysis:

Analysis:

Analysis:

Analysis:

- $C(\mathcal{P}) \in O(\sqrt{n \log(n)}).$
- ② $|E| ∈ O(n^2).$
- **③** Tree-parallel decomposition:

Analysis:

- $C(\mathcal{P}) \in O(\sqrt{n \log(n)}).$
- **2** $|E| \in O(n^2).$
- Tree-parallel decomposition:

Total cost:

- $O(\sqrt{n\log(n)})$ queries.
- 2 $\widetilde{O}(\sqrt{n})$ time.

Relations between algorithmic frameworks

Graph composition:

Graph composition:

- Definition:
 - *st*-connectivity with edge span programs.

$\mathsf{Summary}~(\mathsf{II}/\mathsf{II})$

Graph composition:

Definition:

• *st*-connectivity with edge span programs.

2 Analysis:

- Exact witness characterization using effective resistances.
- Path-cut theorem: weaker but easier to apply.

Graph composition:

Definition:

• *st*-connectivity with edge span programs.

analysis:

- Exact witness characterization using effective resistances.
- Path-cut theorem: weaker but easier to apply.

3 Time-efficient implementation:

- Tree-parallel decomposition.
- Ø Efficient implementation using QROM.

Graph composition:

- Definition:
 - *st*-connectivity with edge span programs.
- 2 Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- **③** Time-efficient implementation:
 - Tree-parallel decomposition.
 - Ø Efficient implementation using QROM.

Examples:

Graph composition:

Definition:

• *st*-connectivity with edge span programs.

analysis:

- Exact witness characterization using effective resistances.
- Path-cut theorem: weaker but easier to apply.

③ Time-efficient implementation:

- Tree-parallel decomposition.
- Ø Efficient implementation using QROM.

Examples:

- In this talk:
 - The $\Sigma^* 20^* 2\Sigma^*$ -problem.

Graph composition:

Definition:

• *st*-connectivity with edge span programs.

analysis:

- Exact witness characterization using effective resistances.
- Path-cut theorem: weaker but easier to apply.

Time-efficient implementation:

- Tree-parallel decomposition.
- Ø Efficient implementation using QROM.

Examples:

In this talk:

- **1** The $\Sigma^* 20^* 2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - **2** $OR \circ pSEARCH.$
 - **③** Dyck-language recognition with depth 3.
 - 3-increasing subsequence.

Graph composition:

Definition:

• *st*-connectivity with edge span programs.

analysis:

- Exact witness characterization using effective resistances.
- Path-cut theorem: weaker but easier to apply.

Time-efficient implementation:

- Tree-parallel decomposition.
- Ø Efficient implementation using QROM.

Examples:

In this talk:

- **1** The $\Sigma^* 20^* 2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - **2** $OR \circ pSEARCH.$
 - **3** Dyck-language recognition with depth 3.
 - 3-increasing subsequence.

Thanks for your attention! ajcornelissen@outlook.com

References (I/III)

- [AGJ21] Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search.
- [Bel12b] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.
- [Bel12a] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.
- [BR12] Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum algorithms for *st*-connectivity and claw detection.
- [BT20] Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees.
- [CKK+22] Andrew M Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang. Quantum divide and conquer.
 - [CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum query upper bounds based on classical decision trees.
 - [JJKP18] Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms for connectivity and related problems.

References (II/III)

- [JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula evaluation.
- [JP24] Stacey Jeffery and Galina Pass. Multidimensional quantum walks, recursion, and quantum divide & conquer.
- [JZ25] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with application to *k*-distinctness.
- [LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity inspired by the elitzur-vaidman bomb tester.
- [LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek, and Mario Szegedy. Quantum query complexity of state conversion.
 - [Rei09] Ben W Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function.
 - [Rei11] Ben W Reichardt. Reflections for quantum query algorithms.

[RŠ12] Ben Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating formulas.