
Quantum algorithms through composition of graphs

Arjan Cornelissen1

1Simons Institute, University of California, Berkeley, California

March 26th, 2025

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 1 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work].

Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work]. Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f :

1 f : D → {0, 1}.
2 D ⊆ {0, 1}n.

Method: Two types of
frameworks:

1 Quantum walks.
Unification:
[AGJ21].

2 Span programs /
adversary bound.
Unification:
[This work].

Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula

[RŠ12,Rei09,LMR+11,Rei11]

Adaptive
learning graph

Learning graph

[Bel12a,Bel12b]

Deterministic algorithm

Decision tree +
guessing algorithm

Weighted decision tree

[LL16,BT20,CMP22]

st-connectivity

[BR12,JK17,JJKP18]

Multidimensional
quantum walk

[JZ25,JP24]

Quantum divide
& conquer

[CKK+22]

Graph composition

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

[This work]

↓ Query-optimal ↓
↑ Complexity measures ↑

Quantum algorithmQ

Span program

Dual adversary bound
Phase estimation

algorithm

Boolean formula
√
FS

Adaptive
learning graphALG

Learning graphLG

Deterministic algorithmD

Decision tree +
guessing algorithm

√
GT

Weighted decision treeWDT

st-connectivityst

Multidimensional
quantum walk Quantum divide

& conquer

Graph composition

Zero-error weighted
decision tree

WDT0

Zero-error decision tree
+ guessing algorithm

√
GT0

Zero-error
randomized algorithm

R0

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 2 / 13

Complexity measure relations for total boolean functions

Q

Q0

QE

R

R0

D

st

WDT0

√
GT0

WDT

√
GT√

FS

ALG

LG
R2 WDT2

0

FS
R3

Q4 n Q3
E
R2
0

WDT2

n √
n2n

⊕
n

∧

GT, LG2,FSQ3 Q3/2

Q2
E

R2

Q4R2
0

GT1−ε

√
2n

Legend:

A

∀f : {0, 1}n → {0, 1}
A(f) ∈ Õ(B(f))

B

A

∃f : {0, 1}n → {0, 1}
A(f) ∈ Õ(B(f))

B

A

New in this work

B

Open questions:

1 Separation between Q and st?

2 Can we prove D ∈ Õ(st2)?

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 3 / 13

Complexity measure relations for total boolean functions

Q

Q0

QE

R

R0

D

st

WDT0

√
GT0

WDT

√
GT√

FS

ALG

LG
R2 WDT2

0

FS
R3

Q4 n Q3
E
R2
0

WDT2

n √
n2n

⊕
n

∧

GT, LG2,FSQ3 Q3/2

Q2
E

R2

Q4R2
0

GT1−ε

√
2n

Legend:

A

∀f : {0, 1}n → {0, 1}
A(f) ∈ Õ(B(f))

B

A

∃f : {0, 1}n → {0, 1}
A(f) ∈ Õ(B(f))

B

A

New in this work

B

Open questions:

1 Separation between Q and st?

2 Can we prove D ∈ Õ(st2)?

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 3 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.

3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈
K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.

4 C (P) =
√

max
x∈f −1(0)

w−(x ,P) · max
x∈f −1(1)

w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.

4 C (P) =
√

max
x∈f −1(0)

w−(x ,P) · max
x∈f −1(1)

w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Span programs [RŠ12,Rei09,Rei11]

Span program: P = (H, x 7→ H(x),K, |w0⟩) on D.

1 Hilbert space: H.

2 Input-dependent subspace: ∀x ∈ D,H(x) ⊆ H.

3 Input-independent subspace: K ⊆ H.

4 Initial vector: |w0⟩ ∈ K⊥.

Positive vs. negative inputs:

1 f : D → {0, 1}, f (x) = 1 ⇔ |w0⟩ ∈ K +H(x).

2 w+(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈ F ∩H(x)}.
3 w−(x ,P) = min{∥|w⟩∥2 : |w⟩ ∈

K⊥ ∩H(x)⊥, ⟨w0|w⟩ = 1}.
4 C (P) =

√
max

x∈f −1(0)
w−(x ,P) · max

x∈f −1(1)
w+(x ,P).

Thm: Q(f ; 2ΠH(x) − I) = O(C (P)) [Rei11].

0

H

H(x)

K

|w0⟩

F

P
ositive

in
p
u
t

|wx⟩

0H

K
|w0⟩

F

H(x)

|wx⟩
K⊥ ∩H(x)⊥

N
egative

in
p
u
t

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 4 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉

HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V ,E), resistances r : E → [0,∞], s, t ∈ V .

1 Flow: f : E → C.
Flow space: HG = Span{|e⟩ : e ∈ E},
f 7→ |fG ,r ⟩ =

∑
e∈E fe

√
re |e⟩.

2 Circulation: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = 0.

Circulation space: CG ,r ⊆ HG .

3 Unit st-flow: flow f with ∀v ∈ V ,∑
v∈N+(v) fe −

∑
v∈N−(v) fe = δv ,s − δv ,t .

Unit st-flow subspace: FG ,s,t ⊆ HG .

4 Effective resistance: RG ,s,t,r := ∥|f min
G ,s,t,r ⟩∥2.

5 Subgraph: x ∈ {0, 1}E 7→ G (x) 7→ HG(x) ⊆ HG .

st-connectivity span program: (HG , x 7→ HG(x), CG ,r , |f min
G ,s,t,r ⟩).

sG = t

r1 r2

r3
r4

r5

r6 r7

0

HG

CG ,r

FG ,s,t,r

∣∣∣f min
G ,s,t,r

〉
HG(x)

∣∣∣f min
G(x),s,t,r

〉

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 5 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Graph composition:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Graph composition:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Graph composition:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .

Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Graph compositions [This work]

Graph composition:

1 Undirected graph G = (V ,E).

2 Edge span programs (Pe)e∈E on D.

Formally: Span program P on D:

1 H =
⊕

e∈E He

2 H(x) =
⊕

e∈E He(x)

3 E : HG → H, |e⟩ 7→ |w e
0 ⟩ / ∥|w e

0 ⟩∥.
4 K = E(CG ,r)⊕

⊕
e∈E Ke , with re = ∥|w e

0 ⟩∥
2.

5 |w0⟩ = E(|f min
G ,s,t,r ⟩).

Main theorem: For all x ∈ D,

1 w+(x ,P) = RG ,s,t,r+ with r+(e) = w+(x ,Pe).

2 w−(x ,P) = R−1
G ,s,t,r− with r−(e) = w−(x ,Pe)

−1.

Positive witness size:

sG = t

P1 P2

P3

P4
P5

P6 P7

P1 P2

P3

P4
P5

P6 P7

w+
(x ,

P2)

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) = RG ,s,t,r+ .
Negative witness size w−(x ,P):

sG = t

P1 P2

P3

P4
P5

P6 P7

sG =

t

P2

P4
P5

P7

w−(x
,P2)

−1
w−

(x
,P

4
)
−1

w
− (x ,P

5) −
1

w−
(x
,P

7
)
−1

w−(x ,P) = R−1
G ,s,t,r− .

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 6 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2

P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2

P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).

Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).
Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Path-cut theorem

Theorem: For all x ∈ D,

1 Let P be a path from s to t:
w+(x ,P) ≤

∑
e∈P w+(x ,Pe).

2 Let C be a cut between s and t:
w−(x ,P) ≤

∑
e∈C w−(x ,Pe).

Properties:

1 Simpler (less-powerful) version.

2 Still powerful enough for many
applications.

Positive input:

sG = t

P1

P3

P4
P5

P6 P7

P2P2

w+
(x
,P

3
) w

+ (x ,P
5)

w
+
(x
,P

6) w
+
(x
,P

7
)

w+(x ,P) ≤
∑

e∈P w+(x ,Pe).
Negative input:

sG = t

P1

P3 P5

P6

P2

P4

P7

C

P2

P4

P7

w−(
x ,P2)

w−(x ,P4)

w
−
(x
,P

7
)

w−(x ,P) ≤
∑

e∈C w−(x ,Pe).
Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 7 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.

1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0
x 2

=
2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0
x 2

=
2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√
n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0
x 2

=
2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

Example: the Σ∗20∗2Σ∗-problem

Σ = {0, 1, 2}, f : Σn → {0, 1}.
1 f (x) = [x ∈ Σ∗20∗2Σ∗].

2 Let x be a positive instance.
x = · · · 0102 000000︸ ︷︷ ︸

length ℓ

2100 · · ·

⇒ w+(x ,P) ≤
1 +

∑ℓ
j=1

1
j + 1 ∈ O(log(n)).

3 Let x be a negative instance.
x = 2 001︸︷︷︸

ℓ1=3

102 0001︸︷︷︸
ℓ2=4

002 001︸︷︷︸
ℓ3=3

· · ·

⇒ w−(x ,P) ≤
n +

∑k
j=1 2ℓj ∈ O(n).

4 C (P) ∈ O(
√

n log(n)).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0
x 2

=
2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

C

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 8 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.
Bottleneck: Implementation of RCG ,r

:= 2ΠCG ,r
− I .

Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.

Bottleneck: Implementation of RCG ,r
:= 2ΠCG ,r

− I .
Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.
Bottleneck: Implementation of RCG ,r

:= 2ΠCG ,r
− I .

Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.
Bottleneck: Implementation of RCG ,r

:= 2ΠCG ,r
− I .

Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.
Bottleneck: Implementation of RCG ,r

:= 2ΠCG ,r
− I .

Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (I/II)

Three operations: (each is called O(C (P)) times)

1 2ΠH(x) − I =
⊕

e∈E (2ΠHe(x) − I).

2 2ΠK − I = −(2ΠCG ,r
− I)

⊕
e∈E (2ΠKe − I).

3 C|w0⟩ : |⊥⟩ 7→ |w0⟩ / ∥|w0⟩∥.
Bottleneck: Implementation of RCG ,r

:= 2ΠCG ,r
− I .

Decompositions:

1 Tree decomposition: CG ,r =
⊕k

j=1 CG |Ej ,r |Ej
.

2 Parallel decomposition between v and w :
CG ,r =

⊕k
j=1 CG |Ej ,r |Ej

⊕ E(C⊥), with

1 C = Span{
∑k

j=1
1

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ |j⟩} ⊆ Ck .

2 E : |j⟩ 7→
|f min
G|Ej

,v,w,r|Ej
⟩

∥|f min
G|Ej

,v,w,r|Ej
⟩∥ .

3 Always possible to decompose.

Tree decomposition:

E1

E2

E3 E4

E = E1 ⊔ E2 ⊔ E3 ⊔ E4

Parallel decomposition:

v w

E1

E2

E3

E = E1 ⊔ E2 ⊔ E3

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 9 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.

2 Embed |e⟩ = |j1, j2, . . . , jd⟩.
2 Circuit implementation of RCG ,r

:
1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.

2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

(Time-efficient) Implementation (II/II)

1 Tree-parallel decomposition tree:
1 Every leaf is a single edge, i.e.,

Ej1,...,jd = {e}.
2 Embed |e⟩ = |j1, j2, . . . , jd⟩.

2 Circuit implementation of RCG ,r
:

1 Every Ej is a state-preparation operation.
2 Every Uj is:

1 Identity for a tree decomposition.
2 Reflection through a 1D subspace for

parallel decomposition.

3 Both can be implemented with KP-trees:

1 Õ(log |E |) time,

2 Õ(|E |) bits of QROM.

4 Total cost:

1 Õ(d log |E |) time,

2 Õ(d |E |) bits of QROM.

Tree-parallel decomposition tree

E

E1 E2 E3

E1,1 E1,2 E2,1 E3,1 E3,2 E3,3

D
ep
th

d

Circuit implementation

E†
1

U1

E1 E†
2

U2

E2 Ud

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 10 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√
n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√
n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

x2 = 2 x3 = 0

x 3
=

2

1
2
[x4 = 0]

x 4
=

2

1
3
[x5 = 0]

x 5
=

2

1
n−3

[xn−1 = 0]

x n
=

2

xn−1 = 2

x n
=

2
Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

t = w

v
x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

t = w

v
x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

t = w

v
x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√

n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

t = w

v
x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Example: Time-efficient implementation of the Σ∗20∗2Σ∗-problem

Analysis:

1 C (P) ∈ O(
√

n log(n)).

2 |E | ∈ O(n2).

3 Tree-parallel decomposition:

E

E1 E2 · · ·En−1

E1,1E1,2E1,3E2,1E2,2E2,3 En−1,1

d
∈
O
(l
og

(n
))

Total cost:

1 O(
√
n log(n)) queries.

2 Õ(
√
n) time.

3 Õ(n2) bits of QROM. (Further
ad-hoc improvements possible).

s

t

x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

t = w

v
x1 = 2 x2 = 0

x 2
=

2

1
2
[x3 = 0]

x 3
=

2

1
3
[x4 = 0]

x 4
=

2

1
n−2

[xn−1 = 0]

x n
=

2

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 11 / 13

Summary (I/II)

Relations between algorithmic frameworks

Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Multidimensional
quantum walk

Graph composition
Quantum divide

& conquer

st-connectivityBoolean formula

Adaptive
learning graph

Learning graph

Weighted decision tree

Decision tree +
guessing algorithm

Deterministic algorithm

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

↓ Query-optimal ↓
↑ Complexity measures ↑

Relations between complexity
measures

Q

Q0

QE

R

R0

D

st

WDT0

√
GT0

WDT

√
GT√

FS

ALG

LG

R2 WDT2
0

FS
R3
Q4 n Q3

E
R2
0

WDT2

n

√
n2n

⊕
n

∧

GT, LG2,FSQ3 Q3/2

Q2
E

R2

Q4R2
0

GT1−ε

√
2n

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 12 / 13

Summary (I/II)

Relations between algorithmic frameworks

Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Multidimensional
quantum walk

Graph composition
Quantum divide

& conquer

st-connectivityBoolean formula

Adaptive
learning graph

Learning graph

Weighted decision tree

Decision tree +
guessing algorithm

Deterministic algorithm

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

↓ Query-optimal ↓
↑ Complexity measures ↑

Relations between complexity
measures

Q

Q0

QE

R

R0

D

st

WDT0

√
GT0

WDT

√
GT√

FS

ALG

LG

R2 WDT2
0

FS
R3
Q4 n Q3

E
R2
0

WDT2

n

√
n2n

⊕
n

∧

GT, LG2,FSQ3 Q3/2

Q2
E

R2

Q4R2
0

GT1−ε

√
2n

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 12 / 13

Summary (I/II)

Relations between algorithmic frameworks

Quantum algorithm

Span program

Dual adversary bound
Phase estimation

algorithm

Multidimensional
quantum walk

Graph composition
Quantum divide

& conquer

st-connectivityBoolean formula

Adaptive
learning graph

Learning graph

Weighted decision tree

Decision tree +
guessing algorithm

Deterministic algorithm

Zero-error weighted
decision tree

Zero-error decision tree
+ guessing algorithm

Zero-error
randomized algorithm

↓ Query-optimal ↓
↑ Complexity measures ↑

Relations between complexity
measures

Q

Q0

QE

R

R0

D

st

WDT0

√
GT0

WDT

√
GT√

FS

ALG

LG

R2 WDT2
0

FS
R3
Q4 n Q3

E
R2
0

WDT2

n

√
n2n

⊕
n

∧

GT, LG2,FSQ3 Q3/2

Q2
E

R2

Q4R2
0

GT1−ε

√
2n

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 12 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:

1 Definition:
1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:

1 In this talk:
1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

Summary (II/II)

Graph composition:
1 Definition:

1 st-connectivity with edge span programs.

2 Analysis:
1 Exact witness characterization using

effective resistances.
2 Path-cut theorem: weaker but easier to

apply.

3 Time-efficient implementation:
1 Tree-parallel decomposition.
2 Efficient implementation using QROM.

Examples:
1 In this talk:

1 The Σ∗20∗2Σ∗-problem.

2 In the paper:
1 Pattern matching.
2 OR ◦ pSEARCH.
3 Dyck-language recognition with depth 3.
4 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

References (I/III)

[AGJ21] Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of
quantum walk search.

[Bel12b] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.

[Bel12a] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.

[BR12] Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum
algorithms for st-connectivity and claw detection.

[BT20] Salman Beigi and Leila Taghavi. Quantum speedup based on classical
decision trees.

[CKK+22] Andrew M Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and
Daochen Wang. Quantum divide and conquer.

[CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum
query upper bounds based on classical decision trees.

[JJKP18] Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita.
Quantum algorithms for connectivity and related problems.

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

References (II/III)

[JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity
and formula evaluation.

[JP24] Stacey Jeffery and Galina Pass. Multidimensional quantum walks, recursion,
and quantum divide & conquer.

[JZ25] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with
application to k-distinctness.

[LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query
complexity inspired by the elitzur–vaidman bomb tester.

[LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek, and Mario Szegedy.
Quantum query complexity of state conversion.

[Rei09] Ben W Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function.

[Rei11] Ben W Reichardt. Reflections for quantum query algorithms.

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

References (III/III)

[RŠ12] Ben Reichardt and Robert Špalek. Span-program-based quantum algorithm
for evaluating formulas.

Arjan Cornelissen (Simons Institute) Graph composition March 26th, 2025 13 / 13

