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Q* n Qf Legend:
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n 7, WDT3/2 A A(f) € O(B(f))
' ¢>< B0y
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Ry . / / New in this work
A
GT,LG*FS Open questions:
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© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE, ).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,

2 N2

G = X/?,Z%
S , )
2/ O \NXK?(:PfL

W+(X7P) = RG,s,t,r*-
Negative witness size w_(x, P):
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Path-cut theorem
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Theorem: For all x € D,
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

P3 /O O
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

773/0—\—@
G=(s) P&

O Rz

C
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
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Positive input:
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

X7\7)4

o

W/\

C

w_(x,P) <D ecc w-(x,Pe).
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Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
Properties:
@ Simpler (less-powerful) version.

@ Still powerful enough for many
applications.
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Positive input:

Ahe ok
¢ o) ~§5§25
X N
G: qu ¢Q“
Bhe! Ny

W+(X7P) < ZeGP W+(X77)e)'

Negative input:

X 7\7)4

- /
)

W/\

C

w_(x,P) <D ecc W-(x,Pe).
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Example: the >*20%2% *-problem
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Example: the >*20%2% *-problem

¥ ={0,1,2}, f: £" — {0,1}.
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Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].
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Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

J
AN
Il
5 N
0] n—3 [xn—1 = 0]
N J
Il
N
O
0] R
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Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S
1+ 371 3 +1 € O(log(n)).

Arjan Cornelissen (Simons Institute)

C
]
O
J
t
C
| O O @) O
Xp = X3 = 0
[ J
O O O O
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Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S

1+ 371 3 +1 € O(log(n)).

© Let x be a negative instance.
x =2 001 1020001002 001 - - -

— =~ T~

¢1=3 lr=4 {3=3
= w_(x,P) <
n+ 2115:1 2¢; € O(n).

Arjan Cornelissen (Simons Institute)

1
1
1
X4::2
[
1
1

Graph composition

N

O
]

April 3rd, 2025

8/13



Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S

1+ 371 3 +1 € O(log(n)).

© Let x be a negative instance.
x =2 001 1020001002 001 ---

— =~ T~

¢1=3 lr=4 {3=3
= w_(x,P) <
n+ 2115:1 2¢; € O(n).

Q@ C(P) € O(+/nlog(n)).

Arjan Cornelissen (Simons Institute)
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(Time-efficient) Implementation (I/II)
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(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -
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(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -
Bottleneck: Implementation of RCG’, = 2|_|CG,, — 1.
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(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of Re., :=2¢., — 1.
Decompositions:

@ Tree decomposition: Cg , = @Jk: Cole,

orle; -

Arjan Cornelissen (Simons Institute) Graph composition

Tree decomposition:
O O

Oi\ O\O Ey|
\O’ o—o O
E=EHUEUEUE,
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(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of RCG,, =20, — 1.
Decompositions:
@ Tree decomposition: Cg , = @Jk: CGIEj,rIEj'
@ Parallel decomposition between v and w:
C.r = Bj_1 Cole rle, © E(CT), with
® = Span{¥iy g U} € €
TR ‘fG\var\E> j

mgyg VW,‘E>H'

Arjan Cornelissen (Simons Institute) Graph composition

Tree decomposition:
O O

Oi\ O\O Ey|
\O’ o—o e
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(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)
Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of RCG,r =20, — 1.

Decompositions:

.- k
@ Tree decomposition: Cg,r = P;_ CGIEj,r\Ej'
@ Parallel decomposition between v and w:

C.r = Bj_1 Cole rle, © E(CT), with

k .
@ C=Span{} m i} € C*.

e e vow.r >
0 £:lj)rs fomnne)
T g1
© Always possible to decompose.
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Tree decomposition:
O O

Oi . O\O Ey|
\O’ o—o e
E=EHUEUEUE,
Parallel decomposition:
O
Q El o

RN

E=EKHUEUE;
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(Time-efficient) Implementation (lI1/11)
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:
@ Every leaf is a single edge, i.e.,

Tree-parallel decomposition tree
Ejl ----- Jd — {e} E
) AR
8 Ei B
[
[

E3
S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

E
@ Embed |e) = |j1, /2, -, Jd)- / ‘ \\

IS =

E3
S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

Depth d
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:
@ Every leaf is a single edge, i.e.,

Tree-parallel decomposition tree
Ej,..jo = {e}. o ] E
® Embed |e) = |1, /2, -, Jd)-

@ Circuit implementation of Re, :

Depth d
m
1
o

I N NN
Ei1 Eip

Exy E31 Esx Es3

Circuit implementation
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 E3p Es3

Circuit implementation
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e.,
Ejl ,,,,, Jd — {e} ] ]
® Embed |e) = |1, /2, -, Jd)-

@ Circuit implementation of Re, :

@ Every & is a state-preparation operation.
@ Every U is:

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for
parallel decomposition.

Arjan Cornelissen (Simons Institute)

Graph composition

Depth d

Tree-parallel decomposition tree

S N NN
Ei1

Eip Ex1 Ez1 E3p Es3

Circuit implementation
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

. . - E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.
@ Every U is:

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for Circuit implementation
parallel decomposition.
©® Both can be implemented with KP-trees:
0@ O(log|E|) time,
@ O(|E|) bits of QROM.
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(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

. . - E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.
@ Every U is:

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for Circuit implementation
parallel decomposition.

©® Both can be implemented with KP-trees:
0@ O(log|E|) time,
@ O(|E|) bits of QROM.
@ Total cost:
@ O(dlog|E|) time,
@ O(d|E|) bits of QROM.
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Example: Time-efficient implementation of the X*20*2% *-problem
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Example: Time-efficient implementation of the 2*20*2% *-problem

)
[q]
I
%
n—3 [anl = 0]
o J
I
—
r—aln-1=10]
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Example: Time-efficient implementation of the 2*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

1
J 4
i
<
n—3 [X"71 = 0]
i}
<
m[xn—l =0]
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Example: Time-efficient implementation of the 2*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

1
J 4
i
X
n—3 [X"71 = 0]
i}
<
m[xn—l =0]
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Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).
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Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

<

X

N N
|Il Il
g 2 % %
s — 2\/ — o O O
e rer Yo=0tu=0 Dl 1=0]
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Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

Arjan Cornelissen (Simons Institute)

Graph composition
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Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

Arjan Cornelissen (Simons Institute)

([\1 t=w )
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N
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<

X

O
3[x=0] 7z b1 =0]
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Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

Q |E| € O(r?).

© Tree-parallel decomposition:
%S £ ( t=w )
= ////// AN by oy TT . ~
3 E, E --E,1 I I ! 5 I
S AR | s 4 <4 v o : X
w | BLibi2E1 3621620623 Eno11 x1=2 x=0 %[X3 = Oj_% [xa = 0] —5[xn—1=10]

he) 1 | VI | n I

n/2 n/2
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Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

Q |E| € O(r?).
© Tree-parallel decomposition:
% £ ( t=w )
\b-s // AN (Y ~ ™ N
3 E, E --E,1 I [ [ 5 I
S| T I [ s } N L o 2
w | BLibi2E1 3621620623 Eno11 =2 =0 1[x;=0 5lxa =0] —5[xa—1 = 0]
he) m | m m | 1\ |
Total cost: n/2 n/2
@ O(y/nlog(n)) queries.
@ O(y/n) time.

@ O(n?) bits of QROM. (Further
ad-hoc improvements possible).
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Summary (1/I1)

Relations between algorithmic frameworks

[Deterministic aIgorithm)—){ Z§ro—error . ‘
Learning graph

randomized algorithm
Decision tree + —
Zero-error decision tree
guessing algonthm . .
+ guessing algorithm
Adaptive [Weighted deC|S|on treej\} —
learning graph Zero-error weighted
— decision tree
Boolean formula 1 Complexity measures T
Graph composition Quer -o't.lmal +
Quantum divide
T & conquer
on S - Span program
ase estimation Dual adversary bound]

algorithm R ==
& J\TQuantum algorithm]

Multidimensional
quantum walk
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Summary (1/11)

Relations between complexity
measures

. - ] Zero-error n 3
4
[I)etermlnlstlc algorithm randomized algorithm ‘ Q n Q

Decision tree + —
Zero-error decision tree
guessing algonthm . .

+ guessing algorithm
Adaptive

[Weighted deC|S|on treej\} —
learning graph Zero-error weighted l

— decision tree
st-connectivit, -
Boolean formula 1 Complexity measures T
— -optimal
Graph composition Quer o”|ma +
Quantum divide
Tl

& conquer
on - - Span program
‘ ase estimation Dual adversary bound]

algorithm 2 ==
& J\TQuantum algorithm] AN N

Relations between algorithmic frameworks

Learning graph

Multidimensional
quantum walk

Q3 Q¥/2 ‘ GT,LG?,FS
AN
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Summary (I1/11)

Graph composition:
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Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.
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Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
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Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.
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Summary (I1/11)

Graph composition: Examples:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.
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Summary (I1/11)

Graph composition: Examples:
@ Definition: @ In this talk:
@ st-connectivity with edge span programs. ©@ The X*20*2X*-problem.
@ Analysis:

©® Exact witness characterization using
effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.
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Summary (I1/11)

Graph composition: Examples:
@ Definition: @ In this talk:
@ st-connectivity with edge span programs. ©@ The X*20*2X*-problem.
@ Analysis: @ In the paper:
@ Exact witness characterization using @ Pattern matching.
effective resistances. ® OR o pSEARCH.
@ Path-cut theorem: weaker but easier to © Dyck-language recognition with depth 3.
apply. @ 3-increasing subsequence.

© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.
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Summary (I1/11)

Graph composition:
@ Definition:

@ st-connectivity with edge span programs.

@ Analysis:
©® Exact witness characterization using
effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute)

Graph composition

Examples:

@ In this talk:
@ The £*20*2%*-problem.
@ In the paper:

@ Pattern matching.

® OR opSEARCH.

© Dyck-language recognition with depth 3.
@ 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com
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