Quantum algorithms through composition of graphs

Arjan Cornelissen¹

¹Simons Institute, University of California, Berkeley, California

April 3rd, 2025

Goal: Design algorithm for boolean function *f*:

- $2 \mathcal{D} \subseteq \{0,1\}^n.$

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- $2 \mathcal{D} \subseteq \{0,1\}^n.$

- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

Method: Two types of frameworks:

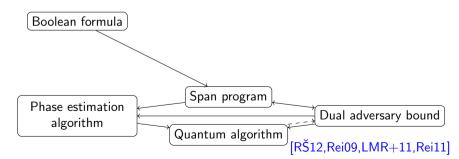
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].

Quantum algorithm

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

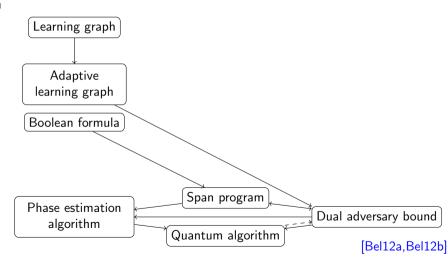
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$

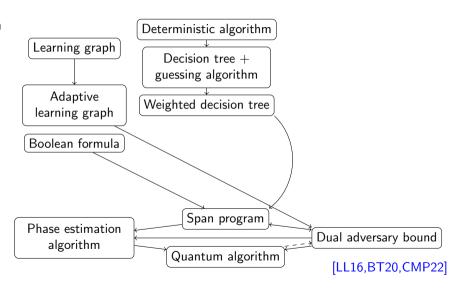
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$

- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



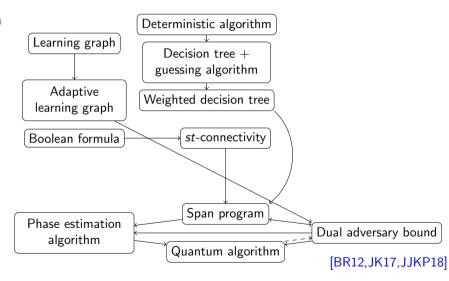
Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

Method: Two types of frameworks:

- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification:

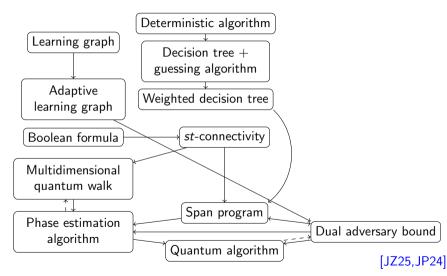
[This work].



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0,1\}.$

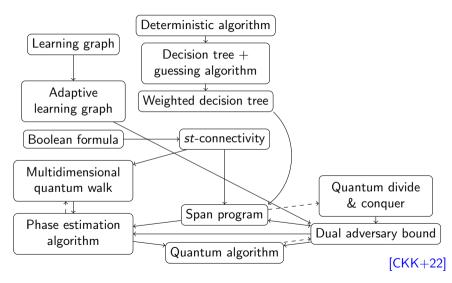
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$

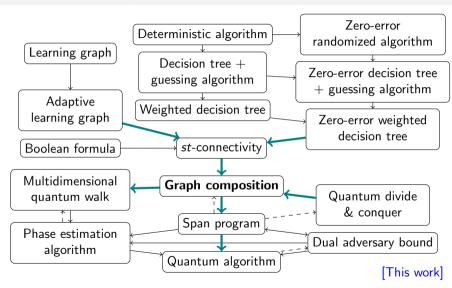
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- $\mathcal{D} \subseteq \{0,1\}^n.$

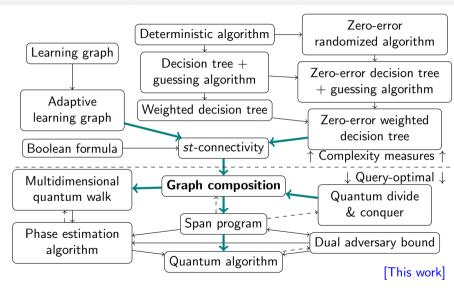
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

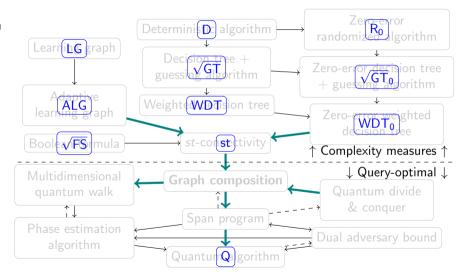
- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



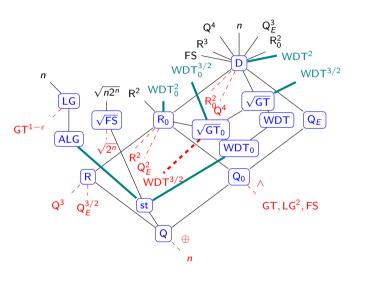
Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

- Quantum walks. Unification: [AGJ21].
- Span programs / adversary bound. Unification: [This work].



Complexity measure relations for total boolean functions



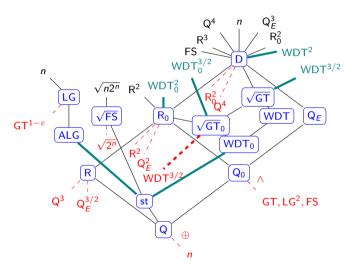
Legend:

A
$$A = \begin{cases} B & \forall f : \{0,1\}^n \to \{0,1\} \\ A(f) \in \widetilde{O}(\mathsf{B}(f)) \end{cases}$$

$$A = \begin{cases} B & \exists f : \{0,1\}^n \to \{0,1\} \\ A(f) \in \widetilde{O}(\mathsf{B}(f)) \end{cases}$$

$$A = \begin{cases} B & \text{New in this work} \end{cases}$$

Complexity measure relations for total boolean functions



Legend:

A
$$\begin{array}{c}
\mathsf{B} & \forall f : \{0,1\}^n \to \{0,1\} \\
\mathsf{A}(f) \in \widetilde{O}(\mathsf{B}(f))
\end{array}$$

$$\begin{array}{c}
\mathsf{B} & \exists f : \{0,1\}^n \to \{0,1\} \\
\mathsf{A}(f) \in \widetilde{O}(\mathsf{B}(f))
\end{array}$$

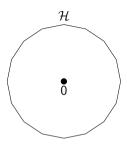
$$\begin{array}{c}
\mathsf{B} & \mathsf{New in this work}
\end{array}$$

Open questions:

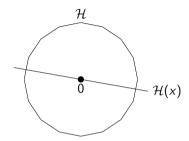
- Separation between Q and st?
- ② Can we prove $D \in \widetilde{O}(st^2)$?

Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

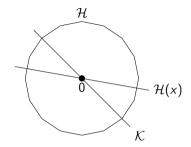
• Hilbert space: H.



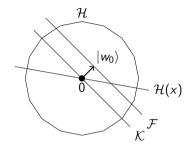
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.



- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.



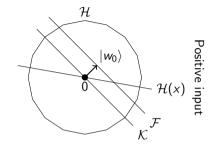
- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.



Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

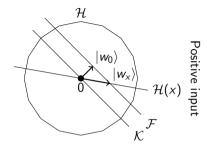


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$

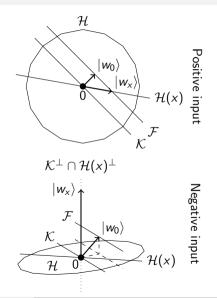


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
- $w_{-}(x, \mathcal{P}) = \min\{\||w\rangle\|^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$

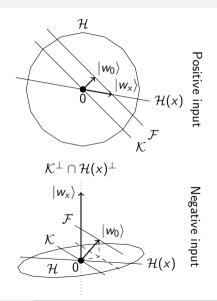


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
- $w_{-}(x, \mathcal{P}) = \min\{||w\rangle||^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$
- $C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$



Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

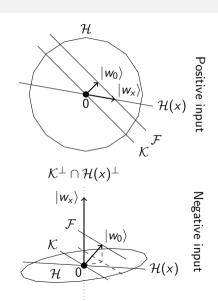
Positive vs. negative inputs:

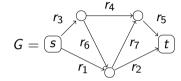
$$w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$$

$$w_{-}(x, \mathcal{P}) = \min\{||w\rangle||^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$$

$$C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$$

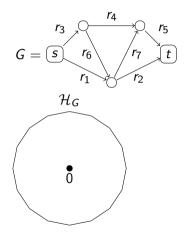
Thm: $Q(f; 2\Pi_{\mathcal{H}(x)} - I) = O(C(\mathcal{P}))$ [Rei11].



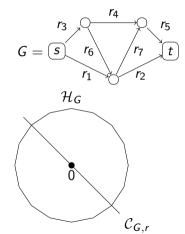


Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$.

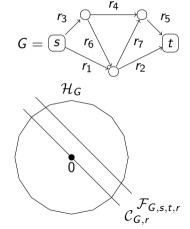
• Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.



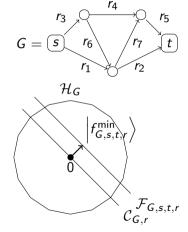
- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in F} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.



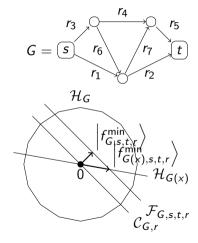
- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.



- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $C_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.



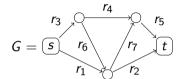
- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.
- **5** Subgraph: $x \in \{0,1\}^E \mapsto G(x) \mapsto \mathcal{H}_{G(x)} \subseteq \mathcal{H}_G$.

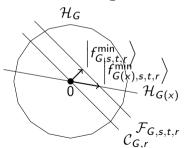


Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$.

- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $C_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.
- **5** Subgraph: $x \in \{0,1\}^E \mapsto G(x) \mapsto \mathcal{H}_{G(x)} \subseteq \mathcal{H}_G$.

st-connectivity span program: $(\mathcal{H}_G, x \mapsto \mathcal{H}_{G(x)}, \mathcal{C}_{G,r}, |f_{G,s,t,r}^{\min}\rangle)$.



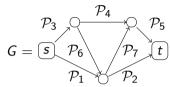


Graph compositions [This work]

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition:

- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .



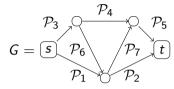
Graph composition:

- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$



Graph composition:

- **1** Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

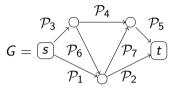
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1} \text{ with } r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}.$



Graph composition:

- **1** Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

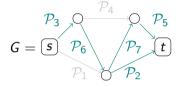
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$
- $\bullet \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in \mathcal{E}} \mathcal{K}_e, \text{ with } r_e = |||w_0^e\rangle||^2.$
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1} \text{ with } r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}.$

Positive witness size:



Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$.

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1} \text{ with } r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}.$

Positive witness size:



Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

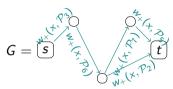
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.

Positive witness size:



$$w_+(x,\mathcal{P})=R_{G,s,t,r^+}.$$

Graph composition:

- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

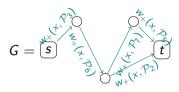
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

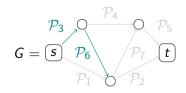
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s.t.r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.

Positive witness size:





Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

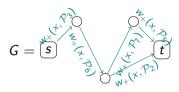
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

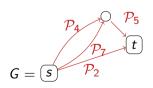
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1} \text{ with } r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}.$

Positive witness size:





Graph composition:

- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

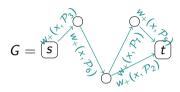
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

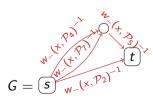
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- ② $w_{-}(x, \mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x, \mathcal{P}_{e})^{-1}$.

Positive witness size:





Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

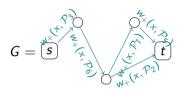
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

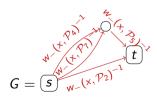
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$,

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1} \text{ with } r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}.$

Positive witness size:





$$w_{-}(x, \mathcal{P}) = R_{G.s.t.r^{-}}^{-1}$$
.

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, P) \le \sum_{e \in P} w_+(x, P_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

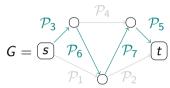
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



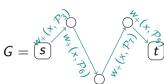
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



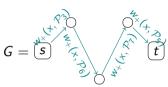
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



Theorem: For all $x \in \mathcal{D}$,

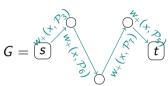
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



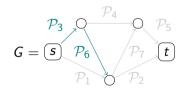
$$w_+(x,\mathcal{P}) \leq \sum_{e \in P} w_+(x,\mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

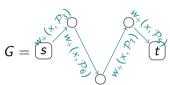


$$w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e).$$
Negative input:

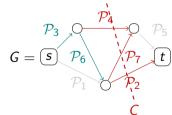


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

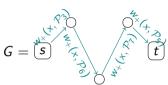


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

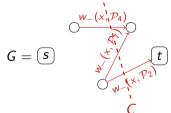


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

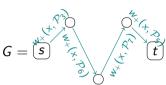


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

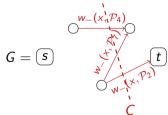


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



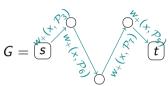
$$w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

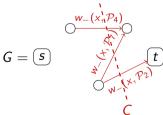
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_e)$.

Properties:

- Simpler (less-powerful) version.
- Still powerful enough for many applications.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



$$w_{-}(x,\mathcal{P}) \leq \sum_{e \in C} w_{-}(x,\mathcal{P}_e).$$

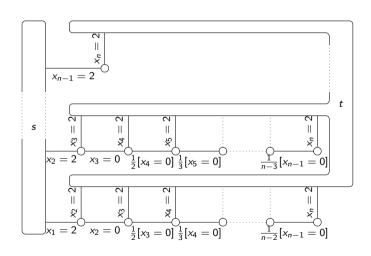
$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

1
$$f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

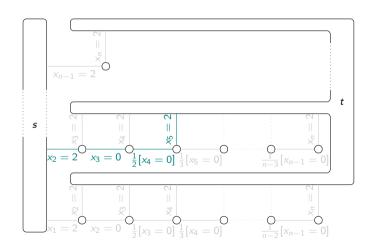
1
$$f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$$



$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

- **1** $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$
- 2 Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$ $\Rightarrow w_{\ell}(x, \mathcal{P}) <$

$$\Rightarrow w_+(x,\mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$$

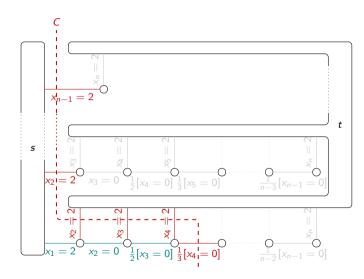


$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

- **1** $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$
- 2 Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$

$$\Rightarrow w_+(x,\mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$$

① Let x be a negative instance. $x = 2 \underbrace{001}_{\ell_1=3} 102 \underbrace{0001}_{\ell_2=4} 002 \underbrace{001}_{\ell_3=3} \cdots$ $\Rightarrow w_-(x, \mathcal{P}) \leq n + \sum_{i=1}^k 2\ell_i \in O(n)$.

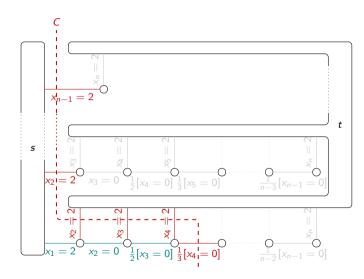


$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

- **1** $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$
- 2 Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$

$$\Rightarrow w_+(x,\mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$$

- **3** Let *x* be a negative instance. $x = 2 \underbrace{001}_{\ell_1=3} 102 \underbrace{0001}_{\ell_2=4} 002 \underbrace{001}_{\ell_3=3} \cdots$ ⇒ $w_-(x, \mathcal{P}) \le n + \sum_{i=1}^k 2\ell_i \in O(n)$.
- $C(\mathcal{P}) \in O(\sqrt{n \log(n)}).$



Three operations: (each is called O(C(P)) times)

- $\bullet 2\Pi_{\mathcal{H}(x)} I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^e(x)} I).$
- $2\Pi_{\mathcal{K}} I = -(2\Pi_{\mathcal{C}_{G,r}} I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} I).$

Three operations: (each is called O(C(P)) times)

- $\bullet 2\Pi_{\mathcal{H}(x)} I = \bigoplus_{e \in E} (2\Pi_{\mathcal{H}^e(x)} I).$
- $2\Pi_{\mathcal{K}} I = -(2\Pi_{\mathcal{C}_{G,r}} I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} I).$

Bottleneck: Implementation of $R_{C_{G,r}} := 2\Pi_{C_{G,r}} - I$.

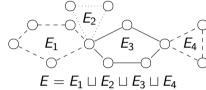
Three operations: (each is called O(C(P)) times)

- $2\Pi_{\mathcal{K}} I = -(2\Pi_{\mathcal{C}_{G,r}} I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} I).$

Bottleneck: Implementation of $R_{C_{G,r}} := 2\Pi_{C_{G,r}} - I$. Decompositions:

1 Tree decomposition: $C_{G,r} = \bigoplus_{j=1}^k C_{G|_{E_j},r|_{E_j}}$.

Tree decomposition:



Three operations: (each is called O(C(P)) times)

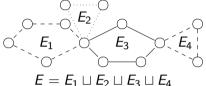
$$2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} - I).$$

Bottleneck: Implementation of $R_{\mathcal{C}_{G,r}} := 2\Pi_{\mathcal{C}_{G,r}} - I$. Decompositions:

- **1** Tree decomposition: $C_{G,r} = \bigoplus_{j=1}^k C_{G|_{E_i},r|_{E_i}}$.
- **2** Parallel decomposition between v and w: $C_{G,r} = \bigoplus_{j=1}^k C_{G|_{E_i},r|_{E_i}} \oplus \mathcal{E}(\mathcal{C}^{\perp})$, with

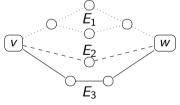
$$\bullet \ \mathcal{C} = \mathsf{Span}\{\textstyle\sum_{j=1}^k \frac{1}{\||f^{\mathsf{min}}_{G|_{E_i},v,w,r|_{E_i}}\rangle\|}\,|j\rangle\} \subseteq \mathbb{C}^k.$$

Tree decomposition:



$$E = E_1 \sqcup E_2 \sqcup E_3 \sqcup E_4$$

Parallel decomposition:



$$E=E_1\sqcup E_2\sqcup E_3$$

Three operations: (each is called O(C(P)) times)

$$2\Pi_{\mathcal{K}} - I = -(2\Pi_{\mathcal{C}_{G,r}} - I) \bigoplus_{e \in E} (2\Pi_{\mathcal{K}^e} - I).$$

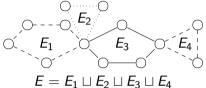
Bottleneck: Implementation of $R_{\mathcal{C}_{G,r}} := 2\Pi_{\mathcal{C}_{G,r}} - I$. Decompositions:

- **1** Tree decomposition: $C_{G,r} = \bigoplus_{j=1}^k C_{G|_{E_i},r|_{E_i}}$.
- Parallel decomposition between v and w: $C_{G,r} = \bigoplus_{j=1}^k C_{G|_{E_i},r|_{E_i}} \oplus \mathcal{E}(\mathcal{C}^{\perp})$, with

$$\bullet \ \mathcal{C} = \mathsf{Span}\{\textstyle\sum_{j=1}^k \frac{1}{\||f^{\mathsf{min}}_{G|_{E_i}, \mathsf{v}, \mathsf{w}, \mathsf{r}|_{E_i}}\rangle\|} \ |j\rangle\} \subseteq \mathbb{C}^k.$$

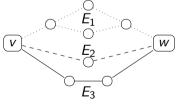
Always possible to decompose.

Tree decomposition:



 $E = E_1 \sqcup E_2 \sqcup E_3 \sqcup E_4$

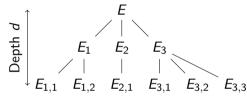
Parallel decomposition:



$$E=E_1\sqcup E_2\sqcup E_3$$

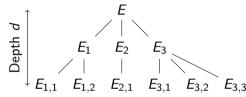
- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$

Tree-parallel decomposition tree



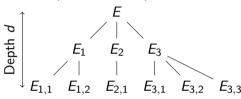
- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$

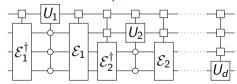
Tree-parallel decomposition tree



- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$
- **2** Circuit implementation of $R_{C_{G,r}}$:

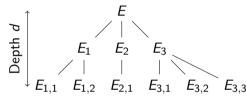
Tree-parallel decomposition tree

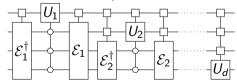




- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$
- ② Circuit implementation of $R_{C_{G,r}}$:
 - lacktriangledown Every \mathcal{E}_j is a state-preparation operation.

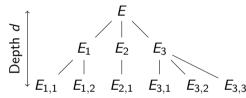
Tree-parallel decomposition tree

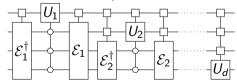




- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$
- 2 Circuit implementation of $R_{C_{G,r}}$:
 - Every \mathcal{E}_i is a state-preparation operation.
 - \bigcirc Every U_i is:
 - Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.

Tree-parallel decomposition tree

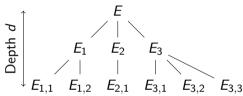


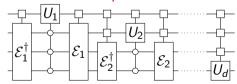


- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$
- 2 Circuit implementation of $R_{C_{G,r}}$:
 - Every \mathcal{E}_i is a state-preparation operation.
 - \bigcirc Every U_i is:
 - 1 Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.
 - 3 Both can be implemented with KP-trees:

 - $\widetilde{O}(|E|)$ bits of QROM.

Tree-parallel decomposition tree



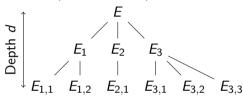


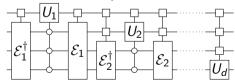
- Tree-parallel decomposition tree:
 - Every leaf is a single edge, i.e., $E_{i_1,...,i_d} = \{e\}.$
- 2 Circuit implementation of $R_{C_{G,r}}$:
 - Every \mathcal{E}_i is a state-preparation operation.
 - \bigcirc Every U_i is:
 - Identity for a tree decomposition.
 - Reflection through a 1D subspace for parallel decomposition.
 - 3 Both can be implemented with KP-trees:

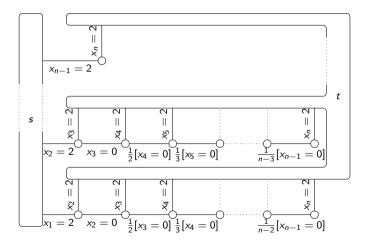
 - $\widetilde{O}(|E|)$ bits of QROM.
 - Total cost:

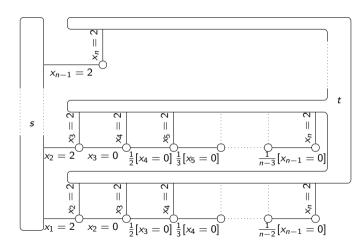
 - $\widetilde{O}(d|E|)$ bits of QROM.

Tree-parallel decomposition tree

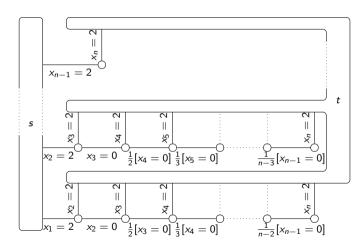




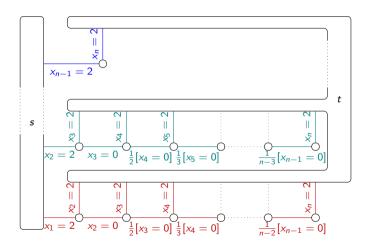




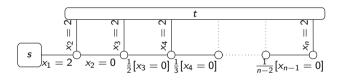
- ② |E| ∈ $O(n^2)$.



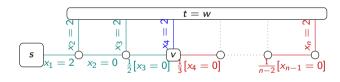
- ② |E| ∈ $O(n^2)$.



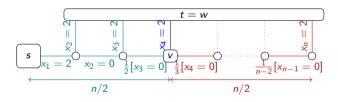
- ② |E| ∈ $O(n^2)$.



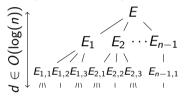
- ② |E| ∈ $O(n^2)$.

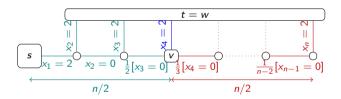


- ② |E| ∈ $O(n^2)$.



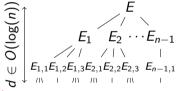
- ② |E| ∈ $O(n^2)$.
- **1** Tree-parallel decomposition:





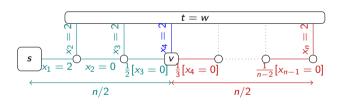
Analysis:

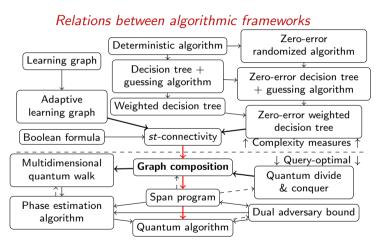
- ② |E| ∈ $O(n^2)$.
- **1** Tree-parallel decomposition:

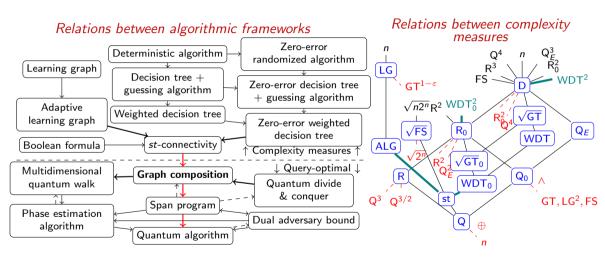


Total cost:

- $O(\sqrt{n\log(n)}) queries.$
- $\widetilde{O}(\sqrt{n})$ time.
- $\widetilde{O}(n^2)$ bits of QROM. (Further ad-hoc improvements possible).







- **1** Definition:
 - st-connectivity with edge span programs.

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Time-efficient implementation:
 - Tree-parallel decomposition.
 - 2 Efficient implementation using QROM.

Graph composition:

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Time-efficient implementation:
 - Tree-parallel decomposition.
 - 2 Efficient implementation using QROM.

Examples:

Graph composition:

- Definition:
 - **1** *st*-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Time-efficient implementation:
 - Tree-parallel decomposition.
 - 2 Efficient implementation using QROM.

Examples:

- In this talk:
 - The $\Sigma^*20^*2\Sigma^*$ -problem.

Graph composition:

- Definition:
 - **1** *st*-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Time-efficient implementation:
 - Tree-parallel decomposition.
 - 2 Efficient implementation using QROM.

Examples:

- In this talk:
 - The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \bigcirc OR \circ pSEARCH.
 - 3 Dyck-language recognition with depth 3.
 - 3-increasing subsequence.

Graph composition:

- Definition:
 - **1** *st*-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- 3 Time-efficient implementation:
 - Tree-parallel decomposition.
 - 2 Efficient implementation using QROM.

Examples:

- In this talk:
 - The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \bigcirc OR \circ pSEARCH.
 - 3 Dyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Thanks for your attention! ajcornelissen@outlook.com

References (I/III)

- [AGJ21] Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search.

 [Ball2h] Alaksandra Balaya, Saan argaman for functions with constant sized 1 contificates.
- [Bel12b] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.
- [Bel12a] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.
 - [BR12] Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum algorithms for *st*-connectivity and claw detection.
 - [BT20] Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees.
- [CKK+22] Andrew M Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang. Quantum divide and conquer.
 - [CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum query upper bounds based on classical decision trees.
 - [JJKP18] Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms for connectivity and related problems.

References (II/III)

- [JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula evaluation.
- [JP24] Stacey Jeffery and Galina Pass. Multidimensional quantum walks, recursion, and quantum divide & conquer.
- [JZ25] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with application to k-distinctness.
- [LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity inspired by the elitzur–vaidman bomb tester.
- [LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek, and Mario Szegedy. Quantum query complexity of state conversion.
 - [Rei09] Ben W Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function.
 - [Rei11] Ben W Reichardt. Reflections for quantum query algorithms.

References (III/III)

[RŠ12] Ben Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating formulas.