Quantum algorithms through composition of graphs J

Arjan Cornelissen?

1Simons Institute, University of California, Berkeley, California

April 3rd, 2025

111 SIMONS
o1 INSTITUTE

—— for the Theory of Computing

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 1/13

Quantum algorithmic frameworks (for boolean functions)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:

o f:D—{0,1}.
@ D C{0,1}".

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Unification:
[AGJ21].

@ Span programs /

adversary bound.

Unification:
[This work].

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025

2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

@ Quantum walks.

Unification:
[AGJ21].

@ Span programs /
adversary bound.
Unification:
[This work].

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

[Quantum algorithm]

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:

Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Boolean formula

Unification:
[AGJ21].
@ Span programs / .
adversary bound. Phase estimation D — —
Unification: algorithm J;_)[Quantum - Orlthm](’/ ual adversary boun]
[This work]. = [R$12,Rei09,LMR+11,Rei11]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm

for boolean function f: Learning graph

o f:D—{0,1}.

C n
@ Dc {01} Adaptive
Method: Two types of learning graph
frameworks:

Boolean formula

© Quantum walks.
Unification:
[AGJ21].

@ Span programs /
adversary bound.

Unification:
[This work].

— Span program
Phase estimation (Dual adversary boundj
algorithm IS
J‘\ﬁ[Quantum aIgorithmT/

[Bell2a,Bel12b)]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Unification:
[AGJ21].

@ Span programs /

adversary bound.

Unification:
[This work].

[Deterministic algorithm]

Learning graph —
{ Decision tree +

guessing algorithm

: T
Aq;aptlve [Weighted decision tree]
learning graph

Boolean formula

— Span program
Phase estimation 1
— étDual adversary boundj

algorithm -
g J\’[Quantum a'gorithmjk/ [LL16,BT20,CMP22]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Unification:
[AGJ21].

@ Span programs /

adversary bound.

Unification:
[This work].

Learning graph

[Deterministic algorithm]
I

Decision tree +
guessing algorithm

Adaptive
learning graph

T
J [Weighted decision tree]

Boolean formula st-connectivity

Phase estimation
algorithm

Span program

.
étDual adversary boundj

Arjan Cornelissen (Simons Institute)

J\’[Quantum algorithm -

T/ [BR12,JK17,JJKP18]

Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Unification:
[AGJ21].

@ Span programs /

adversary bound.

Unification:
[This work].

Learning graph

[Deterministic algorithm]
I

Decision tree +
guessing algorithm

Adaptive
learning graph

T
J [Weighted decision tree]

Boolean formula

st-connectivity

Multidimensional
quantum walk

il

Phase estimation
algorithm

Span program

— 9(Dual adversary boundj

Arjan Cornelissen (Simons Institute)

J\’[Quantum algorithmf;’/

[JZ25,JP24]

Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

© Quantum walks.

Unification:
[AGJ21].

@ Span programs /

adversary bound.

Unification:
[This work].

Learning graph

[Deterministic algorithm]
I

Decision tree +
guessing algorithm

Adaptive
learning graph

T
J [Weighted decision tree]

Boolean formula

st-connectivity

Multidimensional
quantum walk

Quantum divide
& conquer

il

Phase estimation
algorithm

Span program

I
— 9(Dual adversary boundj

Arjan Cornelissen (Simons Institute)

J\’[Quantum algorithmf;’/

[CKK+22]

Graph composition April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:

o f:D—{0,1}.

Learning graph

C n
@ Dc {01} Adaptive
Method: Two types of learning graph
frameworks:

@ Quantum walks.

[Welghted deC|S|on treel{:{
Boolean formula st-connectivity

Unification: Multidimensional
[AGJ21]. quantum walk
@ Span programs / 1
adversary bound. Phase estimation
Unification: algorithm

Zero-error J

Determlnlstlc algorithm . .
[g randomlzed algorithm

-

DeC|5|on tree +
guessing algonthm

Zero-error deC|S|on tree
+ guessmg algorithm

Zero-error Welghted
decision tree

Quantum divide
- & conquer

Span program

(Dual adversary boundj

[This work].

Arjan Cornelissen (Simons Institute)

J [Quantum algorlthmT/

Graph composition

[This work]

April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:

o f:D—{0,1}.

Learning graph

C n
@ Dc {01} Adaptive
Method: Two types of learning graph
frameworks:

@ Quantum walks.

Unification: Multidimensional
[AGJ21]. quantum walk
@ Span programs / 1
adversary bound. Phase estimation
Unification: algorithm

Zero-error J

Determlnlstlc algorithm . .
[g randomlzed algorithm

-

DeC|5|on tree +
guessing algonthm

Zero-error deC|S|on tree
+ guessmg algorithm

Zero-error Welghted
decision tree

[Welghted deC|S|on treel{:{
t- tivit
Boolean formula 1 Complexity measures 1

J Query-optimal |
Quantum divide
- & conquer

Span program

(Dual adversary boundj

[This work].

Arjan Cornelissen (Simons Institute)

J [Quantum algorlthmT/

Graph composition

[This work]

April 3rd, 2025 2/13

Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm
for boolean function f:
Q@ f:D—{0,1}.

@ D C{0,1}".
Method: Two types of
frameworks:

@ Quantum walks.

Unification:
[AGJ21].

@ Span programs /
adversary bound.

Unification:
[This work].

Arjan Cornelissen (Simons Institute)

—
NS
Yark — Vet
0
.
WDT L *
-WDTO
> —
J; 1 Complexity measures 1
J Query-optimal |
~ &
4
— l —
R 2 —_ >
o Q) T
Graph composition April 3rd, 2025 2/13

Complexity measure relations for total boolean functions

Q* n Qf Legend:
WDT? / B vr {0,1}" — {0,1}
" 7 \<WDT3/Z A A(f) € O(B(f))
C(VeT B0y
- [W A € OB(h)
; B
RS . / / New in this work
A
GT,LG2,FS

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 3/13

Complexity measure relations for total boolean functions

Q* n Qf Legend:
WDT?2 / B vf:{0,1}" — {0,1}
n 7, WDT3/2 A A(f) € O(B(f))
' ¢>< B0y
epi-e [NG O(B(f))
B
Ry . / / New in this work
A
GT,LG*FS Open questions:
. @ Separation between Q and st?
- ., @ Can we prove D € O(st?)?

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 3/13

Span programs [RS12,Rei09,Reil1]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D. H
© Hilbert space: H.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D. H
© Hilbert space: H.
@ Input-dependent subspace: Vx € D, H(x) C H.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D.
© Hilbert space: H.

@ Input-dependent subspace: Vx € D, H(x) C H.
© Input-independent subspace: K C H.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D.
© Hilbert space: H.

@ Input-dependent subspace: Vx € D, H(x) C H.
© Input-independent subspace: K C H.

Q Initial vector: |wp) € K+.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D. H

© Hilbert space: H. -
@ Input-dependent subspace: Vx € D, H(x) C H. ~\ §.
© Input-independent subspace: K C H. AN 5
Q Initial vector: |wp) € K+. \‘ HE) 'E-
Positive vs. negative inputs: IC]: "

O f:D—{0,1}, f(x) =1 & |wo) € K + H(x).

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D. H

© Hilbert space: H. -
@ Input-dependent subspace: Vx € D, H(x) C H. ~\ é.
© Input-independent subspace: K C H. AN 5
Q Initial vector: |wp) € K+. \‘ HE) 'E-
Positive vs. negative inputs: IC]: "

@ f:D—{0,1}, f(x) = 1 & |wo) € K + H(x).
@ wi(x,P) = min{|[|w)[?: |w) € FNH(x)}.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D. H
© Hilbert space: H. -
@ Input-dependent subspace: Vx € D, H(x) C H. ‘\ é.
© Input-independent subspace: K C H. AN 5
Q Initial vector: |wp) € K+. \‘ HE) 'E-
Positive vs. negative inputs: IC]: "

Q@ F:D—{0,1}, f(x) =1< |w) € K+ H(x).
@ wi(x,P) = min{[|lw)|* : [w) € F N H(x)}.
© w_(x,P) = min{|||w)|* : |w) €

K+ nH(x)L, (wolw) = 1}

indui an1ze3ap

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D.
© Hilbert space: H.

@ Input-dependent subspace: Vx € D, H(x) C H.
© Input-independent subspace: K C H.

Q Initial vector: |wp) € K+.

andul anIlsod

Positive vs. negative inputs:
Q@ F:D—{0,1}, f(x) =1 |wm) € K+ H(x).
@ wi(x,P) = min{|[|w)[? : |w) € FNH(x)}.
@ w_(x,P) = min{[[lw)| : |w) €
KN H(x)*, (wo|w) = 1},

indui an1ze3ap

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

Span programs [RS12,Rei09,Reil1]

Span program: P = (H,x — H(x), K, |wp)) on D.
© Hilbert space: H.

@ Input-dependent subspace: Vx € D, H(x) C H.
© Input-independent subspace: K C H.

Q Initial vector: |wp) € K+.

andul anIlsod

Positive vs. negative inputs:
Q@ F:D—{0,1}, f(x) =1 |wm) € K+ H(x).
@ wi(x,P) = min{|[|w)[? : |w) € FNH(x)}.
@ w_(x,P) = min{[[lw)| : |w) €
KN H(x)*, (wo|w) = 1},

Thm: Q(f; 2M3y() — 1) = O(C(P)) [Reill].

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 4/13

indui an1ze3ap

Electrical networks and span programs [BR12, JK17, JJKP18|

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.

ra
r3 s
/ N
G =
rn r

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.

@ Flow: f: E— C.
Flow space: H = Span{|e) : e € E},
ffer) = Yece fev/Te|€).

Arjan Cornelissen (Simons Institute) Graph composition

ra
r3 s
/ N\
G =
n r
He

April 3rd, 2025

5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.
@ Flow: f: E— C.
Flow space: H = Span{|e) : e € E},

ra
r3 Is
/ N
frolfer) =Y eck fey/Te l€). G:
@ Circulation: flow f with Vv € V, n r
D ovent(v) fe = 2ven-(v) fe = 0. He
Circulation space: Cgr C Hg.

CG,r

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.

@ Flow: f: E— C.
Flow space: H = Span{|e) : e € E},
f=|fr) = ece fe/Te l€).

@ Circulation: flow f with Vv € V,

D ovent(v) fe = 2ven-(v) fe = 0.
Circulation space: Cgr C Hg.

@ Unit st-flow: flow f with Vv € V,

ZveN*(v) fe - ZveN—(v) fe = 5v,s - 5v,t-
Unit st-flow subspace: F s+ C Hg.

Arjan Cornelissen (Simons Institute) Graph composition

ra
r3 s
/ N\
G =
n r
He

April 3rd, 2025

5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.
@ Flow: f: E— C.
Flow space: H = Span{|e) : e € E},

ra
r3 Is
/ N
frolfer) =Y eck fey/Te l€). G:
@ Circulation: flow f with Vv € V, n r
D ovent(v) fe = 2ven-(v) fe = 0. He
Circulation space: Cgr C Hg.

@ Unit st-flow: flow f with Vv € V, \ >
ZvéN*(v) fe — ZVGN_(V) fo = 5V75 - 6V7t'
Unit st-flow subspace: F s+ C Hg.
Q@ Effective resistance: Rg ¢, := |||fIN,)||2.
CGiG,s,t,r

G,s,t,r

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/, E), resistances r : E — [0, 0], s, t € V.

o

Flow: f : E — C.

Flow space: H = Span{|e) : e € E},
f=|fr) = ece fe/Te l€).

Circulation: flow f with Vv € V,

D ovent(v) fe = 2ven-(v) fe = 0.

Circulation space: Cgr C Hg.

Unit st-flow: flow f with Vv € V,

ZvéN*(v) fe — ZVGN_(V) fe = 5V75 - 6V7t'

Unit st-flow subspace: F s+ C Hg.

Effective resistance: R st r :=]Hf(r;"'sntr>\|2
Subgraph: x € {0,1}F — G(x) = He(x) € Ho.
Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

5/13

Electrical networks and span programs [BR12, JK17, JJKP18|

Graph G = (V/,E), resistances r : E — [0,0¢], s, t € V.
@ Flow: f: E— C.
Flow space: H = Span{|e) : e € E},
f|fer) =2 ece fer/Te l€).
@ Circulation: flow f with Vv € V,

D ovent(v) fe = 2ven-(v) fe = 0.
Circulation space: Cgr C Hg.

@ Unit st-flow: flow f with Vv € V,

ZveN*(v) fe - ZveN—(v) fe = 5v,s - 5v,t-
Unit st-flow subspace: F s+ C Hg.

Q Effective resistance: Rg s ¢, =]Hf(r;"'sntr)Hz

@ Subgraph: x € {0,1}F — G(x) = Hg) € He.

st-connectivity span program: (He,x — Hg(x),Co,r |FE0, ,))-

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 5/13

Graph compositions [This work]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 6/13

Graph compositions [This work]

Graph composition:
@ Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.

Arjan Cornelissen (Simons Institute) Graph composition

Graph composition:

P Pa o p

3 5

/ AN

G=
P1 P>

April 3rd, 2025

6/13

Graph compositions [This work]

.. Graph composition:
Graph composition:

© Undirected graph G = (V, E). P3 Fa Ps

@ Edge span programs (Pe)ece on D. _ g Q/\
ge span prog e)ec G=

Formally: Span program P on D: P Py

QO H= @eeEHe

Q@ H(x) = Bece Helx)

Q@ &:He = H,le) = [ng) /lwg)l-

Q@ K =¢(Cor)® Peck Ke, with re = |[|ng)[|*.

© [wo) = E(IfE)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 6/13

Graph compositions [This work]

.. Graph composition:
Graph composition:

P,
© Undirected graph G = (V, E). P3 ! Ps
/ N
@ Edge span programs (Pe)ece on D. G =(s]_Pe P,
Formally: Span program P on D: .% S
1 2
o H = @eGE He
Q@ H(x) = Bece He(x)
Q@ &:He — H,le) = |wg) / [[Iwg)ll-
Q@ K =¢(Cor)® Peck Ke, with re = |[|ng)[|*.
9 [wo) = (I8))-
Main theorem: For all x € D,
QO wi(x,P)= RG,s,t,r+ with ry(e) = wy(x, Pe).
Q@ w_(x,P)= Rgls .~ with r=(e) = w_(x,Pe)t.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= 619ee55 He
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

P Q O Ps
/ N
G=(s) P
O P2

April 3rd, 2025

6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= 619ee55‘?ie
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,
2 N2
G :ZIE' égé /&ig;//lii/
S ,)
2/ O \NXK?(:PfL

April 3rd, 2025

6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= 619ee55 He
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,
S N2
G = % S
2 P2
O

W+(X7 P) = RG,s,t,r*-

April 3rd, 2025

6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= @eeEHe
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

O O,
S N2
G = X/?,Z%
S e)
~0 NN“W
W+(X7P) = RG,s,t,r*-

Negative witness size w_(x, P):

P; O O

G =(s] 7’&

O

April 3rd, 2025 6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= @eeEHe
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,

2 N2

G = X/?,Z%
S ,)
2/ O \NXK?(:PfL

W+(X7P) = RG,s,t,r*-
Negative witness size w_(x, P):

April 3rd, 2025 6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= 619ee55‘?ie
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,
2 N2
G = IEII ﬁi{é /ASigg///)IEi/
S ,)
2/ O \NXK?(:PfL

W+(X7 P) = RG,s,t,r*-

Negative witness size w_(x, P):

April 3rd, 2025

6/13

Graph compositions [This work]

Graph composition:
© Undirected graph G = (V, E).
@ Edge span programs (Pe)ece on D.
Formally: Span program P on D:
QM= @eeEHe
@ H(x) = B.ce Hex)
© £:He = H,le) = [ws) / llwd)]l
© K = E(Co.) ® Boce Ke, with re = [|w)>
© |wo) = £(IfE,).
Main theorem: For all x € D,
Q@ wi(x,P) = Rgst,r+ with ri(e) = wy(x,Pe).

@ w-(x,P)=Rg:,, with r(e) = w_(x,Pe)".

Arjan Cornelissen (Simons Institute) Graph composition

Positive witness size:

Ak O,

2 N2

G = X/?,Z%
S ,)
2/ O \NXK?(:PfL

W+(X7P) = RG,s,t,r*-
Negative witness size w_(x, P):

April 3rd, 2025 6/13

Path-cut theorem

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Ps O o P
/ N
G=(s) P
O P2

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

P; O O Ps
/ AN
G=(s) Ps P,
O

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute)

Graph composition

Positive input:

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

th ‘
J\

W+(X7P) < ZeGP W+(X7Pe)'

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

P3 /O O
G= P&
@
April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

773/0—\—@
G=(s) P&

O Rz

C

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

th ‘
J\

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

X7\7)4

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Gh@\\‘

W+(X7P) < ZeGP W+(X7Pe)'

Negative input:

X7\7)4

o

W/\

C

w_(x,P) <D ecc w-(x,Pe).

April 3rd, 2025

7/13

Path-cut theorem

Theorem: For all x € D,
© Let P be a path from s to t:
Wi (X, P) < 3 ecp Wi (X, Pe)
@ Let C be a cut between s and t:
W—(X7P) < ZeeC W—(vae)'
Properties:
@ Simpler (less-powerful) version.

@ Still powerful enough for many
applications.

Arjan Cornelissen (Simons Institute) Graph composition

Positive input:

Ahe ok
¢ o) ~§5§25
X N
G: qu ¢Q“
Bhe! Ny

W+(X7P) < ZeGP W+(X77)e)'

Negative input:

X 7\7)4

- /
)

W/\

C

w_(x,P) <D ecc W-(x,Pe).

April 3rd, 2025

7/13

Example: the >*20%2% *-problem

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: £" — {0,1}.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

J
AN
Il
5 N
0] n—3 [xn—1 = 0]
N J
Il
N
O
0] R

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025 8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S
1+ 371 3 +1 € O(log(n)).

Arjan Cornelissen (Simons Institute)

C
]
O
J
t
C
| O O @) O
Xp = X3 = 0
[J
O O O O
Graph composition April 3rd, 2025 8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S

1+ 371 3 +1 € O(log(n)).

© Let x be a negative instance.
x =2 001 1020001002 001 - - -

— =~ T~

¢1=3 lr=4 {3=3
= w_(x,P) <
n+ 2115:1 2¢; € O(n).

Arjan Cornelissen (Simons Institute)

1
1
1
X4::2
[
1
1

Graph composition

N

O
]

April 3rd, 2025

8/13

Example: the >*20%2% *-problem

¥ ={0,1,2}, f: 5" = {0,1}.
O f(x) = [x € £*2072%].

@ Let x be a positive instance.
x = ---01020000002100---
——

length ¢
= W—‘r(XaP) S

1+ 371 3 +1 € O(log(n)).

© Let x be a negative instance.
x =2 001 1020001002 001 ---

— =~ T~

¢1=3 lr=4 {3=3
= w_(x,P) <
n+ 2115:1 2¢; € O(n).

Q@ C(P) € O(+/nlog(n)).

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025

8/13

(Time-efficient) Implementation (I/II)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 9/13

(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 9/13

(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -
Bottleneck: Implementation of RCG’, = 2|_|CG,, — 1.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025

9/13

(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of Re., :=2¢., — 1.
Decompositions:

@ Tree decomposition: Cg , = @Jk: Cole,

orle; -

Arjan Cornelissen (Simons Institute) Graph composition

Tree decomposition:
O O

Oi\ O\O Ey|
\O’ o—o O
E=EHUEUEUE,

April 3rd, 2025 9/13

(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)

Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of RCG,, =20, — 1.
Decompositions:
@ Tree decomposition: Cg , = @Jk: CGIEj,rIEj'
@ Parallel decomposition between v and w:
C.r = Bj_1 Cole rle, © E(CT), with
® = Span{¥iy g U} € €
TR ‘fG\var\E> j

mgyg VW,‘E>H'

Arjan Cornelissen (Simons Institute) Graph composition

Tree decomposition:
O O

Oi\ O\O Ey|
\O’ o—o e
E=EHUEUEUE,
Parallel decomposition:
O
el E1 el

RN

E=EKHUEUE;

April 3rd, 2025 9/13

(Time-efficient) Implementation (I/II)
Three operations: (each is called O(C(P)) times)
Q 2Ny — | = Dece(2Myey) — 1)
Q 2Mx — I =—2MN¢s, — 1) Bece(2Mice — 1).
Q Cuy) : [1L) = [wo) / [l[wo) -

Bottleneck: Implementation of RCG,r =20, — 1.

Decompositions:

.- k
@ Tree decomposition: Cg,r = P;_ CGIEj,r\Ej'
@ Parallel decomposition between v and w:

C.r = Bj_1 Cole rle, © E(CT), with

k .
@ C=Span{} m i} € C*.

e e vow.r >
0 £:lj)rs fomnne)
T g1
© Always possible to decompose.

Arjan Cornelissen (Simons Institute) Graph composition

Tree decomposition:
O O

Oi . O\O Ey|
\O’ o—o e
E=EHUEUEUE,
Parallel decomposition:
O
Q El o

RN

E=EKHUEUE;

April 3rd, 2025 9/13

(Time-efficient) Implementation (lI1/11)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:
@ Every leaf is a single edge, i.e.,

Tree-parallel decomposition tree
Ejl ----- Jd — {e} E
) AR
8 Ei B
[
[

E3
S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

E
@ Embed |e) = |j1, /2, -, Jd)- / ‘ \\

IS =

E3
S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

Depth d

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:
@ Every leaf is a single edge, i.e.,

Tree-parallel decomposition tree
Ej,..jo = {e}. o] E
® Embed |e) = |1, /2, -, Jd)-

@ Circuit implementation of Re, :

Depth d
m
1
o

I N NN
Ei1 Eip

Exy E31 Esx Es3

Circuit implementation

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025

10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 E3p Es3

Circuit implementation

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e.,
Ejl ,,,,, Jd — {e}]]
® Embed |e) = |1, /2, -, Jd)-

@ Circuit implementation of Re, :

@ Every & is a state-preparation operation.
@ Every U is:

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for
parallel decomposition.

Arjan Cornelissen (Simons Institute)

Graph composition

Depth d

Tree-parallel decomposition tree

S N NN
Ei1

Eip Ex1 Ez1 E3p Es3

Circuit implementation

April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

. . - E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.
@ Every U is:

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for Circuit implementation
parallel decomposition.
©® Both can be implemented with KP-trees:
0@ O(log|E|) time,
@ O(|E|) bits of QROM.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 10/13

(Time-efficient) Implementation (lI1/11)

© Tree-parallel decomposition tree:

@ Every leaf is a single edge, i.e., Tree-parallel decomposition tree
Ej....ja = {€}-

. . - E
@ Embed |e) = |j1, /o, ..., Jd).
@ Circuit implementation of Re .

@ Every & is a state-preparation operation.
@ Every U is:

Depth d
m
1
o

S N NN
Ei1

Eip Ex1 Ez1 Ezp Es3

@ Identity for a tree decomposition.
@ Reflection through a 1D subspace for Circuit implementation
parallel decomposition.

©® Both can be implemented with KP-trees:
0@ O(log|E|) time,
@ O(|E|) bits of QROM.
@ Total cost:
@ O(dlog|E|) time,
@ O(d|E|) bits of QROM.

Arjan Cornelissen (Simons Institute)

Graph composition April 3rd, 2025 10/13

Example: Time-efficient implementation of the X*20*2% *-problem

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 11/13

Example: Time-efficient implementation of the 2*20*2% *-problem

)
[q]
I
%
n—3 [anl = 0]
o J
I
—
r—aln-1=10]

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025 11/13

Example: Time-efficient implementation of the 2*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

1
J 4
i
<
n—3 [X"71 = 0]
i}
<
m[xn—l =0]

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025 11/13

Example: Time-efficient implementation of the 2*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

1
J 4
i
X
n—3 [X"71 = 0]
i}
<
m[xn—l =0]

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025 11/13

Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025 11/13

Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

<

X

N N
|Il Il
g 2 % %
s — 2\/ — o O O
e rer Yo=0tu=0 Dl 1=0]

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 11/13

Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

Arjan Cornelissen (Simons Institute)

Graph composition

April 3rd, 2025

(t=w)
N N o™ N
Il Il I I
el 3 : 5
O v
x2 =0 %[X:), = Oj_g [X4 = 0] o [Xn—l = 0]

11/13

Example: Time-efficient implementation of the X*20*2% *-problem

Analysis:
Q@ C(P) € O(+/nlog(n)).
Q |E| € O(r?).

Arjan Cornelissen (Simons Institute)

([\1 t=w)
Il

N
Il
<

X

O
3[x=0] 7z b1 =0]

Graph composition April 3rd, 2025 11/13

Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

Q |E| € O(r?).

© Tree-parallel decomposition:
%S £ (t=w)
= ////// AN by oy TT . ~
3 E, E --E,1 I I ! 5 I
S AR | s 4 <4 v o : X
w | BLibi2E1 3621620623 Eno11 x1=2 x=0 %[X3 = Oj_% [xa = 0] —5[xn—1=10]

he) 1 | VI | n I

n/2 n/2

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 11/13

Example: Time-efficient implementation of the X*20*2% *-problem
Analysis:

Q@ C(P) € O(+/nlog(n)).

Q |E| € O(r?).
© Tree-parallel decomposition:
% £ (t=w)
\b-s // AN (Y ~ ™ N
3 E, E --E,1 I [[5 I
S| T I [s } N L o 2
w | BLibi2E1 3621620623 Eno11 =2 =0 1[x;=0 5lxa =0] —5[xa—1 = 0]
he) m | m m | 1\ |
Total cost: n/2 n/2
@ O(y/nlog(n)) queries.
@ O(y/n) time.

@ O(n?) bits of QROM. (Further
ad-hoc improvements possible).

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 11/13

Summary (1/11)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 12/13

Summary (1/I1)

Relations between algorithmic frameworks

[Deterministic aIgorithm)—){ Z§ro—error . ‘
Learning graph

randomized algorithm
Decision tree + —
Zero-error decision tree
guessing algonthm . .
+ guessing algorithm
Adaptive [Weighted deC|S|on treej\} —
learning graph Zero-error weighted
— decision tree
Boolean formula 1 Complexity measures T
Graph composition Quer -o't.lmal +
Quantum divide
T & conquer
on S - Span program
ase estimation Dual adversary bound]

algorithm R ==
& J\TQuantum algorithm]

Multidimensional
quantum walk

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 12/13

Summary (1/11)

Relations between complexity
measures

. -] Zero-error n 3
4
[I)etermlnlstlc algorithm randomized algorithm ‘ Q n Q

Decision tree + —
Zero-error decision tree
guessing algonthm . .

+ guessing algorithm
Adaptive

[Weighted deC|S|on treej\} —
learning graph Zero-error weighted l

— decision tree
st-connectivit, -
Boolean formula 1 Complexity measures T
— -optimal
Graph composition Quer o”|ma +
Quantum divide
Tl

& conquer
on - - Span program
‘ ase estimation Dual adversary bound]

algorithm 2 ==
& J\TQuantum algorithm] AN N

Relations between algorithmic frameworks

Learning graph

Multidimensional
quantum walk

Q3 Q¥/2 ‘ GT,LG?,FS
AN

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 12/13

Summary (I1/11)

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

Summary (I1/11)

Graph composition:

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

13/13

Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

13/13

Summary (I1/11)

Graph composition:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute) Graph composition

April 3rd, 2025

13/13

Summary (I1/11)

Graph composition: Examples:
@ Definition:
@ st-connectivity with edge span programs.
@ Analysis:
©® Exact witness characterization using

effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025

13/13

Summary (I1/11)

Graph composition: Examples:
@ Definition: @ In this talk:
@ st-connectivity with edge span programs. ©@ The X*20*2X*-problem.
@ Analysis:

©® Exact witness characterization using
effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025

13/13

Summary (I1/11)

Graph composition: Examples:
@ Definition: @ In this talk:
@ st-connectivity with edge span programs. ©@ The X*20*2X*-problem.
@ Analysis: @ In the paper:
@ Exact witness characterization using @ Pattern matching.
effective resistances. ® OR o pSEARCH.
@ Path-cut theorem: weaker but easier to © Dyck-language recognition with depth 3.
apply. @ 3-increasing subsequence.

© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

Summary (I1/11)

Graph composition:
@ Definition:

@ st-connectivity with edge span programs.

@ Analysis:
©® Exact witness characterization using
effective resistances.
@ Path-cut theorem: weaker but easier to

apply.
© Time-efficient implementation:

@ Tree-parallel decomposition.
@ Efficient implementation using QROM.

Arjan Cornelissen (Simons Institute)

Graph composition

Examples:

@ In this talk:
@ The £*20*2%*-problem.
@ In the paper:

@ Pattern matching.

® OR opSEARCH.

© Dyck-language recognition with depth 3.
@ 3-increasing subsequence.

Thanks for your attention!
ajcornelissen@outlook.com

April 3rd, 2025 13/13

References (1/111)

[AGJ21]

[Bel12b]
[Bel12a]
[BR12]

[BT20]
[CKK+22]
[CMP22]

[JJKP18]

Simon Apers, Andras Gilyén, and Stacey Jeffery. A unified framework of
quantum walk search.

Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.
Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.
Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum
algorithms for st-connectivity and claw detection.

Salman Beigi and Leila Taghavi. Quantum speedup based on classical

decision trees.

Andrew M Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and
Daochen Wang. Quantum divide and conquer.

Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum
query upper bounds based on classical decision trees.

Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita.
Quantum algorithms for connectivity and related problems.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

References (11/111)

[JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity
and formula evaluation.

[JP24] Stacey Jeffery and Galina Pass. Multidimensional quantum walks, recursion,
and quantum divide & conquer.

[JZ25] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with
application to k-distinctness.

[LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query
complexity inspired by the elitzur-vaidman bomb tester.

[LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Spalek, and Mario Szegedy.
Quantum query complexity of state conversion.

[Rei09] Ben W Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function.

[Reill] Ben W Reichardt. Reflections for quantum query algorithms.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

References (111/111)

[R§12] Ben Reichardt and Robert Spalek. Span-program-based quantum algorithm
for evaluating formulas.

Arjan Cornelissen (Simons Institute) Graph composition April 3rd, 2025 13/13

