Span programs and quantum time complexity

A. J. Cornelissen ${ }^{1}$ S. Jeffery ${ }^{2} \quad$ M. Ozols ${ }^{1} \quad$ A. Piedrafita ${ }^{2}$
${ }^{1}$ QuSoft - University of Amsterdam
${ }^{2}$ QuSoft - CWI

June 22nd, 2020
arXiv:2005.01323

Overview

Overview

(1) High-level discussion

Overview

(1) High-level discussion
(2) Technical part

Overview

(1) High-level discussion
(2) Technical part
(1) Span program \Rightarrow quantum algorithm
(2) Quantum algorithm \Rightarrow span program

Overview

(1) High-level discussion
(2) Technical part
(1) Span program \Rightarrow quantum algorithm
(2) Quantum algorithm \Rightarrow span program
(3) Application to variable-time search

Quantum query algorithms

Quantum query algorithms

Quantum query algorithms

Quantum query algorithms

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.
Given $x \in\{0$
10 11

S : Query complexity no. calls to oracle circuit $\mathcal{O}_{x} \quad S=3$

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.
Given $x \in\{0$

S: Query complexity
T : Time complexity
no. calls to oracle circuit $\mathcal{O}_{x} \quad S=3$
no. elementary gates

Quantum query algorithms

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Given $x \in\{0,1\}^{n}$, calculate $f(x)$.

S: Query complexity
no. calls to oracle circuit \mathcal{O}_{x}

$$
\begin{aligned}
& S=3 \\
& T=10+2 \mathrm{TC}(U)+3 \mathrm{TC}\left(\mathcal{O}_{x}\right) \\
& k=4
\end{aligned}
$$

no. elementary gates

Frameworks

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Examples:
(1) Quantum random walks (Ambainis, '03)

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Examples:
(1) Quantum random walks (Ambainis, '03)
(2) Quantum singular value transformations (Gilyén, Su, Low, Wiebe, '18)

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Examples:
(1) Quantum random walks (Ambainis, '03)
(2) Quantum singular value transformations (Gilyén, Su, Low, Wiebe, '18)
(3) Completely bounded forms (Arunachalam, Briët, Palazuelos, '18)

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Examples:
(1) Quantum random walks (Ambainis, '03)
(2) Quantum singular value transformations (Gilyén, Su, Low, Wiebe, '18)
(3) Completely bounded forms (Arunachalam, Briët, Palazuelos, '18)
(9) Span programs (Reichardt, '09)

Frameworks

A framework has two essential properties:
(1) Encode f into several mathematical objects.
(2) A quantum algorithm is generated from these.

Examples:
(1) Quantum random walks (Ambainis, '03)
(2) Quantum singular value transformations (Gilyén, Su, Low, Wiebe, '18)
(3) Completely bounded forms (Arunachalam, Briët, Palazuelos, '18)
(9) Span programs (Reichardt, '09)
(3) ...

Span program framework

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).
(3) Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).
(3) Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).
(9) Quantum algorithms for graph problems such as:
(1) Bipartiteness testing (Āriņš, '15; Beigi, Taghavi, '20)
(2) Cycle detection (Cade, Montanaro, Belovs, '16; Beigi, Taghavi, '20)
© st-connectivity (Jeffery, Kimmel, '17; Beigi, Taghavi, '20)

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).
(3) Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).
(9) Quantum algorithms for graph problems such as:
(1) Bipartiteness testing (Āriņš, '15; Beigi, Taghavi, '20)
(2) Cycle detection (Cade, Montanaro, Belovs, '16; Beigi, Taghavi, '20)
© st-connectivity (Jeffery, Kimmel, '17; Beigi, Taghavi, '20)
© ...

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).
(3) Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).
(9) Quantum algorithms for graph problems such as:
(1) Bipartiteness testing (Āriņš, '15; Beigi, Taghavi, '20)
(2) Cycle detection (Cade, Montanaro, Belovs, '16; Beigi, Taghavi, '20)
© st-connectivity (Jeffery, Kimmel, '17; Beigi, Taghavi, '20)
(3) ...

Analysis of these algorithms:
(1) Query complexity: easy.
(2) Time complexity: hard.

Span program framework

Has been used to design:
(1) Quantum algorithms from solutions to the dual adversary bound (Reichardt, '09).
(2) Quantum algorithm for k-element distinctness (Belovs, '12).
(3) Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).
(9) Quantum algorithms for graph problems such as:
(1) Bipartiteness testing (Āriņš, '15; Beigi, Taghavi, '20)
(2) Cycle detection (Cade, Montanaro, Belovs, '16; Beigi, Taghavi, '20)
© st-connectivity (Jeffery, Kimmel, '17; Beigi, Taghavi, '20)
(3) ...

Analysis of these algorithms:
(1) Query complexity: easy.
(2) Time complexity: hard.

Motivation 1: We wish to learn more about the time complexity of span program algorithms.

Interconvertibility between span programs and quantum algorithms

Interconvertibility between span programs and quantum algorithms

Span program \longrightarrow Quantum algorithm \mathcal{B}

Interconvertibility between span programs and quantum algorithms
General construction (Reichardt, '09; Jeffery, '20):
Quantum algorithm $\mathcal{A} \longrightarrow$ Span program \longrightarrow Quantum algorithm \mathcal{B}

Interconvertibility between span programs and quantum algorithms

General construction (Reichardt, '09; Jeffery, '20):

with the following properties:

	Quantum algorithm \mathcal{A}	Quantum algorithm \mathcal{B}
Query complexity	S	$\mathcal{O}(S)$

Interconvertibility between span programs and quantum algorithms

General construction (Reichardt, '09; Jeffery, '20):

with the following properties:

	Quantum algorithm \mathcal{A}	Quantum algorithm \mathcal{B}
Query complexity	S	$\mathcal{O}(S)$
Time complexity	T	

Motivation 2: Can we do the same with time complexity?

Interconvertibility between span programs and quantum algorithms

General construction (Reichardt, '09; Jeffery, '20):

with the following properties:

	Quantum algorithm \mathcal{A}	Quantum algorithm \mathcal{B}
Query complexity	S	$\mathcal{O}(S)$
Time complexity	T	$\mathcal{O}(T \operatorname{polylog}(T))^{*}$

Motivation 2: Can we do the same with time complexity? *if we have efficient uniform access to \mathcal{A}.

Interconvertibility between span programs and quantum algorithms
General construction (Reichardt, '09; Jeffery, '20):

with the following properties:

	Quantum algorithm \mathcal{A}	Quantum algorithm \mathcal{B}
Query complexity	S	$\mathcal{O}(S)$
Time complexity	T	$\mathcal{O}(T \operatorname{polylog}(T))^{*}$
Space complexity	k	$k+\mathcal{O}(\operatorname{polylog}(T))^{*}$

Motivation 2: Can we do the same with time complexity? *if we have efficient uniform access to \mathcal{A}.

Interconvertibility between span programs and quantum algorithms

General construction (Reichardt, '09; Jeffery, '20):

with the following properties:

	Quantum algorithm \mathcal{A}	Quantum algorithm \mathcal{B}
Query complexity	S	$\mathcal{O}(S)$
Time complexity	T	$\mathcal{O}(T \operatorname{polylog}(T))^{*}$
Space complexity	k	$k+\mathcal{O}(\operatorname{polylog}(T))^{*}$

Motivation 2: Can we do the same with time complexity?
*if we have efficient uniform access to \mathcal{A}.
Corollary: For every f, there exists a span program that generates a quantum algorithm that computes f with optimal query, time and space complexity.

Span programs - mathematical objects

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H},
 for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H},
 for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.
(9) Linear operator: $A \in \mathcal{L}(\mathcal{H}, \mathcal{V})$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.
(9) Linear operator: $A \in \mathcal{L}(\mathcal{H}, \mathcal{V})$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.
(9) Linear operator: $A \in \mathcal{L}(\mathcal{H}, \mathcal{V})$.

Let $\left|w_{0}\right\rangle=A^{+}|\tau\rangle$.

Span programs - mathematical objects

We wish to design a quantum algorithm that computes

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Four mathematical objects:
(1) Hilbert space: \mathcal{H}, for every $x \in\{0,1\}^{n}$, a subspace $\mathcal{H}(x) \subseteq \mathcal{H}$.
(2) Target space: \mathcal{V}.
(3) Target vector: $|\tau\rangle \in \mathcal{V}$.
(9) Linear operator: $A \in \mathcal{L}(\mathcal{H}, \mathcal{V})$.

Let $\left|w_{0}\right\rangle=A^{+}|\tau\rangle$.
Span program evaluates f if
$f(x)=1 \Leftrightarrow\left|w_{0}\right\rangle \in \mathcal{H}(x)+\operatorname{ker}(A)$.

Span programs - visualization

Span programs - visualization

Span programs - visualization

Positive instance: $f(x)=1$

Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.

Span programs - visualization

Positive instance: $f(x)=1$
Negative instance: $f(x)=0$

Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.

Span programs - visualization

Positive instance: $f(x)=1$
Negative instance: $f(x)=0$

Span programs - visualization

Positive instance: $f(x)=1$
Negative instance: $f(x)=0$

Negative witness:

$$
\begin{gathered}
\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}, \text { s.t. } \\
\left\langle\omega_{x} \mid \omega_{0}\right\rangle=1 .
\end{gathered}
$$

Span programs - visualization

Positive instance: $f(x)=1$
We reflect through $\mathcal{H}(x)$ and then through $\operatorname{ker}(A)$.

Negative instance: $f(x)=0$

Positive witness:

$$
\left|w_{x}\right\rangle \in \mathcal{H}(x) \text {, s.t. } A\left|w_{x}\right\rangle=|\tau\rangle .
$$

Negative witness:

$$
\begin{gathered}
\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp} \text {, s.t. } \\
\left\langle\omega_{x} \mid \omega_{0}\right\rangle=1 .
\end{gathered}
$$

Span programs - visualization

Positive instance: $f(x)=1$
We reflect through $\mathcal{H}(x)$ and then through $\operatorname{ker}(A)$.

Negative instance: $f(x)=0$

Positive witness:

$$
\left|w_{x}\right\rangle \in \mathcal{H}(x) \text {, s.t. } A\left|w_{x}\right\rangle=|\tau\rangle .
$$

Negative witness:

$$
\begin{gathered}
\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp} \text {, s.t. } \\
\left\langle\omega_{x} \mid \omega_{0}\right\rangle=1 .
\end{gathered}
$$

Span programs - visualization

Positive instance: $f(x)=1$
We reflect through $\mathcal{H}(x)$ and then through $\operatorname{ker}(A)$.

Negative instance: $f(x)=0$

Positive witness:

$$
\begin{gathered}
\left|w_{x}\right\rangle \in \mathcal{H}(x), \text { s.t. } A\left|w_{x}\right\rangle=|\tau\rangle . \\
\left|w_{0}\right\rangle \text { rotates at angle } 2 \theta, \\
\theta \geq \sin \theta=\|\left|w_{0}\right\rangle\|/\|\left|w_{x}\right\rangle \| .
\end{gathered}
$$

Negative witness:

$$
\begin{gathered}
\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp} \text {, s.t. } \\
\left\langle\omega_{x} \mid \omega_{0}\right\rangle=1 .
\end{gathered}
$$

Span programs - visualization

Positive instance: $f(x)=1$

We reflect through $\mathcal{H}(x)$ and then through $\operatorname{ker}(A)$.

Negative instance: $f(x)=0$

Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$. $\left|w_{0}\right\rangle$ rotates at angle 2θ, $\theta \geq \sin \theta=\|\left|w_{0}\right\rangle\|/\|\left|w_{x}\right\rangle \|$.

Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t.
$\left\langle\omega_{x} \mid w_{0}\right\rangle=1$.
Part of $\left|w_{0}\right\rangle$ does not rotate.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Span program unitary:

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$. Outcome distribution:

with $\delta=\frac{\|\left|w_{0}\right\rangle \|}{\|\left|w_{x}\right\rangle \|}$ and $\varepsilon=\frac{1}{\|\left|\omega_{x}\right\rangle\|\cdot\|\left|\| w_{0}\right\rangle \|}$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.
Algorithm compiled from span program:

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$. Outcome distribution:

with $\delta=\frac{\|\left|w_{0}\right\rangle \|}{\|\left|w_{x}\right\rangle \|}$ and $\varepsilon=\frac{1}{\|\left|\omega_{x}\right\rangle\|\cdot\|\left|\| w_{0}\right\rangle \|}$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.
Algorithm compiled from span program:
(1) Run phase estimation up to precision

$$
\delta=\frac{\|\left|w_{0}\right\rangle \|}{\left.\max _{x \in f(-1)(1)}\| \| w_{x}\right\rangle \|} .
$$

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$. Outcome distribution:

with $\delta=\frac{\|\left|w_{0}\right\rangle \|}{\|\left|w_{x}\right\rangle \|}$ and $\varepsilon=\frac{1}{\|\left|\omega_{x}\right\rangle\|\cdot\|\left|\| w_{0}\right\rangle \|}$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Algorithm compiled from span program:

(1) Run phase estimation up to precision

$$
\delta=\frac{\|\left|w_{0}\right\rangle \|}{\left.\max _{x \in f(-1)(1)}\| \| w_{x}\right\rangle \|}
$$

(2) Run amplitude estimation on top of that up to precision

$$
\varepsilon=\frac{1}{\|\left|w_{0}\right\rangle\left\|\cdot \max _{x \in f^{(-1)}(0)}\right\|\left|\omega_{x}\right\rangle \|}
$$

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$. Outcome distribution:

with $\delta=\frac{\|\left|w_{0}\right\rangle \|}{\|\left|w_{x}\right\rangle \|}$ and $\varepsilon=\frac{1}{\|\left|\omega_{x}\right\rangle\|\cdot\|\left|\| w_{0}\right\rangle \|}$.

Span programs - algorithm construction

Witnesses of positive and negative instances:
(1) Positive witness:
$\left|w_{x}\right\rangle \in \mathcal{H}(x)$, s.t. $A\left|w_{x}\right\rangle=|\tau\rangle$.
(2) Negative witness:
$\left|\omega_{x}\right\rangle \in \mathcal{H}(x)^{\perp} \cap \operatorname{ker}(A)^{\perp}$, s.t. $\left\langle w_{0} \mid \omega_{x}\right\rangle=1$.

Algorithm compiled from span program:

(1) Run phase estimation up to precision

$$
\delta=\frac{\|\left|w_{0}\right\rangle \|}{\left.\max _{x \in f(-1)(1)}\| \| w_{x}\right\rangle \|}
$$

(2) Run amplitude estimation on top of that up to precision

$$
\varepsilon=\frac{1}{\|\left|w_{0}\right\rangle\left\|\cdot \max _{x \in f^{(-1)}(0)}\right\|\left|\omega_{x}\right\rangle \|}
$$

No. calls to $U(x)$ is
$\mathcal{O}\left(\frac{1}{\delta \varepsilon}\right)=\mathcal{O}\left(\max _{x \in f^{(-1)}(1)} \|\left|w_{x}\right\rangle\left\|\cdot \max _{x \in f^{(-1)}(0)}\right\|\left|\omega_{x}\right\rangle \|\right)$.

Span program unitary:

Run phase estimation with initial state $\left|w_{0}\right\rangle / \|\left|w_{0}\right\rangle \|$. Outcome distribution:

with $\delta=\frac{\|\left|w_{0}\right\rangle \|}{\|\left|w_{x}\right\rangle \|}$ and $\varepsilon=\frac{1}{\|\left|\omega_{x}\right\rangle\|\cdot\|\left|\| w_{0}\right\rangle \|}$.

Span programs - algorithm analysis

Shorthand notation:

$$
W_{+}=\max _{x \in f(-1)(1)} \|\left|w_{x}\right\rangle \|^{2} \quad \text { and } \quad W_{-}=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
$$

Span programs - algorithm analysis

Shorthand notation:

$$
W_{+}=\max _{x \in f^{(-1)}(1)} \|\left|w_{x}\right\rangle \|^{2} \quad \text { and } \quad W_{-}=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
$$

Implementation cost of the algorithm compiled from a span program:

Type	Cost
No. calls to $R_{\text {ker }(A)}$	$\mathcal{O}\left(\sqrt{W_{+} W_{-}}\right)$
No. calls to $R_{\mathcal{H}(x)}$	$\mathcal{O}\left(\sqrt{W_{+} W_{-}}\right)$
No. calls to $C_{\left\|w_{0}\right\rangle}$	$\mathcal{O}\left(\sqrt{W_{+} W_{-}}\right)$
No. calls to $R_{\|0\rangle}$	$\mathcal{O}\left(\sqrt{W_{+} W_{-}}\right)$
No. extra gates	$\mathcal{O}\left(\right.$ polylog $\left.W_{+} W_{-}\right)$
No. extra qubits	$\mathcal{O}\left(\right.$ polylog $\left.W_{+} W_{-}\right)$

Span programs compiled from algorithms (I)

Span programs compiled from algorithms (I)

Span program \quad Quantum algorithm \mathcal{B}

Span programs compiled from algorithms (I)

Quantum algorithm $\mathcal{A} \longrightarrow$ Span program \longrightarrow Quantum algorithm \mathcal{B}

Span programs compiled from algorithms (I)

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(2) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(2) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.
(3) Every U_{j} can only consist of \mathcal{O} (polylog $(T))$ elementary gates.

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(1) S : Query complexity
(2) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.
(3) Every U_{j} can only consist of \mathcal{O} (polylog $(T))$ elementary gates.

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(1) S: Query complexity
(2) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.
(2) T : No. time steps
(3) Every U_{j} can only consist of \mathcal{O} (polylog $(T))$ elementary gates.

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(1) S: Query complexity
(3) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.
(3) T : No. time steps

- Every U_{j} can only consist of
- k: No. qubits \mathcal{O} (polylog $(T))$ elementary gates.

Span programs compiled from algorithms (I)

(1) $\left|\psi_{0}(x)\right\rangle=|00 \cdots 00\rangle$.
(1) S: Query complexity
(2) $\left|\psi_{T}(x)\right\rangle=|00 \cdots 0 f(x)\rangle$.
(2) T : No. time steps
(3) Every U_{j} can only consist of
(3) k : No. qubits \mathcal{O} (polylog $(T))$ elementary gates.
(9) ε : Error probability

Span programs compiled from algorithms (II)

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Index

Workspace

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.
Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle,
\end{aligned}
$$

which equals $|\tau\rangle$ for positive instances.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Problems:

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.
Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle,
\end{aligned}
$$

which equals $|\tau\rangle$ for positive instances.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Problems:

(1) The definition of A depends on x. Solved by making \mathcal{H} a little larger when $t+1$ is a query time step.

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.
Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle
\end{aligned}
$$

which equals $|\tau\rangle$ for positive instances.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Problems:

(1) The definition of A depends on x. Solved by making \mathcal{H} a little larger when $t+1$ is a query time step.
(2) The witness size $W_{+}=\mathcal{O}(T)$. Solved by tuning some weights.
Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.
Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle,
\end{aligned}
$$

which equals $|\tau\rangle$ for positive instances.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$.
Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle
\end{aligned}
$$

which equals $|\tau\rangle$ for positive instances.

Span programs compiled from algorithms (II)

Hilbert space $\mathcal{H} \&$ target space \mathcal{V} :

Span program operator A :

$$
|t\rangle|\psi\rangle \stackrel{A}{\mapsto}|t\rangle|\psi\rangle-|t+1\rangle U_{t+1}|\psi\rangle,
$$

Target vector $|\tau\rangle:|\tau\rangle=|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 01\rangle$. Core idea:

$$
\begin{aligned}
\left|w_{x}\right\rangle:=\sum_{t=0}^{T-1}|t\rangle\left|\psi_{t}(x)\right\rangle & \stackrel{A}{\mapsto}|0\rangle\left|\psi_{0}(x)\right\rangle-|T\rangle\left|\psi_{T}(x)\right\rangle \\
& =|0\rangle|00 \cdots 00\rangle-|T\rangle|00 \cdots 0 f(x)\rangle,
\end{aligned}
$$

Problems:

(1) The definition of A depends on x. Solved by making \mathcal{H} a little larger when $t+1$ is a query time step.
(2) The witness size $W_{+}=\mathcal{O}(T)$.

Solved by tuning some weights.
After some modifications:

$$
W_{+}=\mathcal{O}(S) \quad \text { and } \quad W_{-}=\mathcal{O}(S)
$$

Hence number of calls to the subroutines is

$$
\mathcal{O}\left(\sqrt{W_{+} W_{-}}\right)=\mathcal{O}(S)
$$

which equals $|\tau\rangle$ for positive instances.

Implementation of the subroutines of the algorithm span program

Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$.

Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$. We require the following oracles:

$$
\mathcal{O}_{x}:|i\rangle \mapsto(-1)^{x_{i}}|i\rangle, \quad \mathcal{O}_{\mathcal{A}}:|t\rangle|\psi\rangle \mapsto|t\rangle U_{t}|\psi\rangle \quad \text { and } \quad \mathcal{O}_{\mathcal{S}}:|t\rangle \mapsto(-1)^{t \in \mathcal{S}}|t\rangle
$$

Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$. We require the following oracles:

$$
\mathcal{O}_{x}:|i\rangle \mapsto(-1)^{x_{i}}|i\rangle, \quad \mathcal{O}_{\mathcal{A}}:|t\rangle|\psi\rangle \mapsto|t\rangle U_{t}|\psi\rangle \quad \text { and } \quad \mathcal{O}_{\mathcal{S}}:|t\rangle \mapsto(-1)^{t \in \mathcal{S}}|t\rangle
$$

Analysis of the implementation of the subroutines:

Subroutine	Queries to \mathcal{O}_{x}	Queries to \mathcal{O}_{S}	Queries to $\mathcal{O}_{\mathcal{A}}$	No. extra gates	No. extra qubits	Implementation error
$R_{\text {ker }(A)}$	0	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	0
$R_{\mathcal{H}(x)}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(1)$	0
$C_{\left\|w_{0}\right\rangle}$	0	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(\sqrt{\varepsilon})$
$R_{\|0\rangle}$	0	0	0	$\mathcal{O}(\log (T))$	$\mathcal{O}(\log (T))$	$\mathcal{O}(\sqrt{\varepsilon})$
Total	$\mathcal{O}(S)$	$\mathcal{O}(T)$	$\mathcal{O}(T)$	$\mathcal{O}(T \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(S \sqrt{\varepsilon})$
With error red.	$\mathcal{O}(S \log (S)) \mathcal{O}(T \log (S)) \mathcal{O}(T \log (S))$	$\mathcal{O}(T \operatorname{polylog}(T))$	$\mathcal{O}\left(\operatorname{polylog}(T)+k^{\circ(1)}\right)$	$\mathcal{O}(\sqrt{\varepsilon})$		

Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$. We require the following oracles:

$$
\mathcal{O}_{x}:|i\rangle \mapsto(-1)^{x_{i}}|i\rangle, \quad \mathcal{O}_{\mathcal{A}}:|t\rangle|\psi\rangle \mapsto|t\rangle U_{t}|\psi\rangle \quad \text { and } \quad \mathcal{O}_{\mathcal{S}}:|t\rangle \mapsto(-1)^{t \in \mathcal{S}}|t\rangle
$$

Analysis of the implementation of the subroutines:

Subroutine	Queries to \mathcal{O}_{x}	Queries to \mathcal{O}_{S}	Queries to $\mathcal{O}_{\mathcal{A}}$	No. extra gates	No. extra qubits	Implementation error
$R_{\text {ker }(A)}$	0	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	0
$R_{\mathcal{H}(x)}$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(1)$	0
$C_{\left\|w_{0}\right\rangle}$	0	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S)$	$\mathcal{O}(T / S \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(\sqrt{\varepsilon})$
$R_{\|0\rangle}$	0	0	0	$\mathcal{O}(\log (T))$	$\mathcal{O}(\log (T))$	$\mathcal{O}(\sqrt{\varepsilon})$
Total	$\mathcal{O}(S)$	$\mathcal{O}(T)$	$\mathcal{O}(T)$	$\mathcal{O}(T \operatorname{polylog}(T))$	$\mathcal{O}(\operatorname{polylog}(T))$	$\mathcal{O}(S \sqrt{\varepsilon})$
With error red.	$\mathcal{O}(S \log (S)) \mathcal{O}(T \log (S)) \mathcal{O}(T \log (S))$	$\mathcal{O}(T \operatorname{polylog}(T))$	$\mathcal{O}\left(\operatorname{polylog}(T)+k^{\circ(1)}\right)$	$\mathcal{O}(\sqrt{\varepsilon})$		

Efficient uniform access: implementation of $\mathcal{O}_{\mathcal{A}}$ and $\mathcal{O}_{\mathcal{S}}$ only takes $\mathcal{O}(\operatorname{polylog}(T))$ gates.

Implementing subspace

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.
(3) Core idea:

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.
(3) Core idea:
(1) We define an implementing subspace:

$$
\mathcal{H}_{x}=\operatorname{span}\left\{|t\rangle\left|\psi_{t}(x)\right\rangle: t \in[T]_{0}\right\},
$$

k qubits

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.
(3) Core idea:
(1) We define an implementing subspace:

$$
\mathcal{H}_{x}=\operatorname{span}\left\{|t\rangle\left|\psi_{t}(x)\right\rangle: t \in[T]_{0}\right\},
$$

(2) We prove that $R_{\text {ker }(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$ leave this space invariant.

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.

- Core idea:
(1) We define an implementing subspace:

$$
\mathcal{H}_{x}=\operatorname{span}\left\{|t\rangle\left|\psi_{t}(x)\right\rangle: t \in[T]_{0}\right\},
$$

(2) We prove that $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$ leave this space invariant.
(3) We prove that implementing $R_{|0\rangle}$ on this space can be done in $\mathcal{O}(\log (T))$ gates.

$\log (T)$ qubits

k qubits

Implementing subspace

(1) The state space is $\mathcal{O}(k+\log (T))$ qubits in size.
(2) Reflecting through the all-zeros state naively takes $\mathcal{O}(k+\log (T))$ gates.
(3) Core idea:
(1) We define an implementing subspace:

$$
\mathcal{H}_{x}=\operatorname{span}\left\{|t\rangle\left|\psi_{t}(x)\right\rangle: t \in[T]_{0}\right\},
$$

(2) We prove that $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$ leave this space invariant.
(3 We prove that implementing $R_{|0\rangle}$ on this space can be done in $\mathcal{O}(\log (T))$ gates.

$\log (T)$ qubits

k qubits
(0) Technique of independent interest.

Application: variable-time search

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$,
each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$,
each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps
(3) k_{j} : No. qubits

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$,
each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.

We are given access to these algorithms through
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity

We are given access to these algorithms through
(1) $\mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle$,
(2) $T_{j}:$ No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity
(2) $T_{j}:$ No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

We are given access to these algorithms through
(1) $\mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle$,
(2) $\mathcal{O}_{\mathcal{A}}:|j\rangle|t\rangle|\psi\rangle \mapsto|j\rangle|t\rangle U_{t}^{(j)}|\psi\rangle$,

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.
(1) S_{j} : Query complexity
(2) $T_{j}:$ No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

We are given access to these algorithms through
(1) $\mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle$,
(2) $\mathcal{O}_{\mathcal{A}}:|j\rangle|t\rangle|\psi\rangle \mapsto|j\rangle|t\rangle U_{t}^{(j)}|\psi\rangle$,
(3) $\mathcal{O}_{\mathcal{S}}:|j\rangle|t\rangle \mapsto(-1)^{t \in \mathcal{S}^{(j)}}|j\rangle|t\rangle$.

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.

We are given access to these algorithms through
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

$$
\begin{aligned}
& \text { (1) } \mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle, \\
& \text { (2) } \mathcal{O}_{\mathcal{A}}:|j\rangle|t\rangle|\psi\rangle \mapsto|j\rangle|t\rangle U_{t}^{(j)}|\psi\rangle, \\
& \text { (3) } \mathcal{O}_{\mathcal{S}}:|j\rangle|t\rangle \mapsto(-1)^{t \in \mathcal{S}^{(j)}}|j\rangle|t\rangle \text {, }
\end{aligned}
$$

Now, we define the OR: $f\left(x^{(1)}, \ldots, x^{(n)}\right)=f_{1}\left(x^{(1)}\right) \vee f_{2}\left(x^{(2)}\right) \vee \cdots \vee f_{n}\left(x^{(n)}\right)$.

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.

We are given access to these algorithms through
(1) S_{j} : Query complexity
(2) T_{j} : No. time steps
(3) k_{j} : No. qubits
(4) ε_{j} : Error probability

$$
\begin{aligned}
& \text { (1) } \mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle, \\
& \text { (2) } \mathcal{O}_{\mathcal{A}}:|j\rangle|t\rangle|\psi\rangle \mapsto|j\rangle|t\rangle U_{t}^{(j)}|\psi\rangle, \\
& \text { (3) } \mathcal{O}_{\mathcal{S}}:|j\rangle|t\rangle \mapsto(-1)^{t \in \mathcal{S}^{(j)}}|j\rangle|t\rangle \text {, }
\end{aligned}
$$

Now, we define the OR: $f\left(x^{(1)}, \ldots, x^{(n)}\right)=f_{1}\left(x^{(1)}\right) \vee f_{2}\left(x^{(2)}\right) \vee \cdots \vee f_{n}\left(x^{(n)}\right)$.
Variable-time search: how quickly can we compute f ?

Application: variable-time search

Suppose we have n algorithms $\left\{\mathcal{A}_{j}\right\}_{j=1}^{n}$, each computing a function $f_{j}:\{0,1\}^{m_{j}} \rightarrow\{0,1\}$.

We are given access to these algorithms through
(1) S_{j} : Query complexity
(1) $\mathcal{O}_{x}:|j\rangle|i\rangle \mapsto(-1)^{x_{i}^{(j)}}|j\rangle|i\rangle$,
(2) T_{j} : No. time steps
(2) $\mathcal{O}_{\mathcal{A}}:|j\rangle|t\rangle|\psi\rangle \mapsto|j\rangle|t\rangle U_{t}^{(j)}|\psi\rangle$,
(3) k_{j} : No. qubits
(3) $\mathcal{O}_{\mathcal{S}}:|j\rangle|t\rangle \mapsto(-1)^{t \in \mathcal{S}^{(j)}}|j\rangle|t\rangle$.
(4) ε_{j} : Error probability

Now, we define the OR: $f\left(x^{(1)}, \ldots, x^{(n)}\right)=f_{1}\left(x^{(1)}\right) \vee f_{2}\left(x^{(2)}\right) \vee \cdots \vee f_{n}\left(x^{(n)}\right)$.
Variable-time search: how quickly can we compute f ?

Method	No. queries to \mathcal{O}_{x}	No. queries to $\mathcal{O}_{\mathcal{A}} \& \mathcal{O}_{\mathcal{S}}$	No. extra gates
Naive approach	$\sum_{j=1}^{n} S_{j}$	$\sum_{j=1}^{n} T_{j}$	$\tilde{\mathcal{O}}\left(\sum_{j=1}^{n} T_{j}\right)$
Ambainis '06 (I)	$\mathcal{O}\left(\sqrt{\sum_{j=1}^{n} S_{j}^{2}}\right)$	X	$?$
Ambainis '06 (II)	$\mathcal{O}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right)$	$\mathcal{O}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right)$	$?$

Composition of span programs

Composition of span programs

Composition of span programs

The composition of span programs for $O R$ is known (Reichardt, '09).

Algorithm for variable time search

Algorithm for variable time search

Careful construction of the subroutines $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$ yields:

Algorithm for variable time search

Careful construction of the subroutines $R_{\operatorname{ker}(A)}, R_{\mathcal{H}(x)}, C_{\left|w_{0}\right\rangle}$ and $R_{|0\rangle}$ yields:
$\left.\begin{array}{r|cccc}\text { Method } & \text { No. queries to } \mathcal{O}_{x} & \begin{array}{c}\text { No. queries } \\ \text { to } \mathcal{O}_{\mathcal{A}} \& \mathcal{O}_{\mathcal{S}}\end{array} & \text { No. extra gates } & \text { Error probability } \\ \hline \text { Naive approach } & \sum_{j=1}^{n} S_{j} & \sum_{j=1}^{n} T_{j} & \widetilde{\mathcal{O}}\left(\sum_{j=1}^{n} T_{j}\right) & \mathcal{O}\left(\sum_{j=1}^{n} \varepsilon_{j}\right) \\ \text { Ambainis '06 (I) } & \mathcal{O}\left(\sqrt{\sum_{j=1}^{n} S_{j}^{2}}\right) & \mathrm{X} & ? & - \\ \text { Ambainis '06 (II) } & \mathcal{O}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right) & \mathcal{O}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right) & ? & - \\ \hline \text { Our result } & \mathcal{O}\left(\sqrt{\sum_{j=1}^{n} S_{j}^{2}}\right) & \mathcal{O}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right) & \widetilde{\mathcal{O}}\left(\sqrt{\sum_{j=1}^{n} T_{j}^{2}}\right) & \mathcal{O}\left(\sum_{j=1}^{n} S_{j}^{2} \sum_{j=1}^{n} \varepsilon_{j}\right.\end{array}\right)$

Summary

Summary

Our results:

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Open problems:

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Open problems:

(1) Make the construction more efficient w.r.t. the error probability.

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Open problems:

(1) Make the construction more efficient w.r.t. the error probability.
(2) Extend to more composition results, for instance composition for k-threshold?

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Open problems:

(1) Make the construction more efficient w.r.t. the error probability.
(2) Extend to more composition results, for instance composition for k-threshold?
(3) Figure out the time complexity of Belovs's k-element distinctness algorithm.

Summary

Our results:

(1) Implementation cost of span programs in terms of subroutines.
(2) Construction algo \Rightarrow span program \Rightarrow algo that preserves time complexity.
(3) Application to variable time search.

Open problems:

(1) Make the construction more efficient w.r.t. the error probability.
(2) Extend to more composition results, for instance composition for k-threshold?
(3) Figure out the time complexity of Belovs's k-element distinctness algorithm.

Thanks for your attention!

