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Overview

@ High-level discussion
@ Technical part

@ Span program = quantum algorithm
® Quantum algorithm = span program

© Application to variable-time search
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Quantum query algorithms
f:{0,1}" — {0,1}
Given x € {0,1}", calculate f(x).

S:  Query complexity  no. calls to oracle circuit O, S=3
T: Time complexity  no. elementary gates T=10+2TC(U)+3TC(Oy)
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Quantum query algorithms
f:{0,1}" — {0,1}
Given x € {0,1}", calculate f(x).

S:  Query complexity  no. calls to oracle circuit O, S=3
T: Time complexity  no. elementary gates T=10+2TC(U)+3TC(Ox)
no. qubits k=4
June 22nd, 2020 arXiv:2005.01323 3/18
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@ Quantum algorithm for k-element distinctness (Belovs, '12).

© Quantum algorithm for formula evaluation (Reichardt, Spalek, '12; Jeffery, Kimmel, '17).
@ Quantum algorithms for graph problems such as:

© Bipartiteness testing (Arin%, '15; Beigi, Taghavi, '20)

@ Cycle detection (Cade, Montanaro, Belovs, '16; Beigi, Taghavi, '20)

© st-connectivity (Jeffery, Kimmel, '17; Beigi, Taghavi, '20)

o ..

Analysis of these algorithms:
© Query complexity: easy.
@ Time complexity: hard.

Motivation 1: We wish to learn more about the time complexity of span program algorithms.
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Interconvertibility between span programs and quantum algorithms

General construction (Reichardt, '09; Jeffery, '20):

[Quantum algorithm A Span program Quantum algorithm B]

with the following properties:

Quantum Quantum
algorithm A algorithm B
Query complexity S o(S)
Time complexity T O(T polylog(T))*
Space complexity k k 4+ O(polylog(T))*

Motivation 2: Can we do the same with time complexity?

*if we have efficient uniform access to A.

Corollary: For every f, there exists a span program that generates a quantum algorithm that
computes f with optimal query, time and space complexity.
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Span programs — mathematical objects

We wish to design a quantum algorithm that computes
f:{0,1}" — {0,1}.

Four mathematical objects:
© Hilbert space: H,
for every x € {0,1}", a subspace H(x) C H.
© Target space: V.
© Target vector: |7) € V.
Q Linear operator: A € L(H,V).
Let |wp) = AT |7).
Span program evaluates f if
f(x) =1< |wy) € H(x) + ker(A).
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Negative instance: f(x) =0
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Span programs — visualization

Positive instance: f(x) =1

Negative instance: f(x) =0
We reflect through H(x)
and then through ker(A).
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< |
Ker(A) ¢

Negative witness:
|wx) € H(x)* Nker(A)*, s.t.
(wx| Wo> =1.

Positive witness:
lwy) € H(x), s.t. Alwy) = |7).
|wo) rotates at angle 26,
0 > sin6 = [|[wo)[| / [[lws)l
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Span programs — visualization

Positive instance: f(x) =1

Negative instance: f(x) =0
We reflect through H(x)
and then through ker(A).

Negative witness:
|wx) € H(x)* Nker(A)*, s.t.
(wx| Wo> =1.
Part of |wp) does not rotate.

Positive witness:
lwy) € H(x), s.t. Alwy) = |7).
|wo) rotates at angle 26,
0 > sin6 = [|[wo)[| / [[lws)l
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Span programs — algorithm construction

Witnesses of positive and negative instances:

0 Positive witness:
[wx) € H(x), s.t. Alwx) = |7).

© Negative witness:
lwx) € H(x)T Nker(A)+, s.t. (wo|wx) = 1.
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Witnesses of positive and negative instances:

Q Positive witness:
[wx) € H(x), s.t. Alwx) = |7).

© Negative witness:

lwx) € H(x)T Nker(A)L, s.t. {wo|wx) = 1.

Algorithm compiled from span program:
@ Run phase estimation up to precision
w
s lwol

max, cr( 0y 11wl
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RKer(A)

-6 0 o6

with & — L)l

_ 1
Mol 2" €= o M
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Span programs — algorithm construction

Witnesses of positive and negative instances:

@ Positive witness:
[wy) € H(x), s.t. Alwyx) = |7).
© Negative witness:
|wx) € H(x)L Nker(A)L, s.t. (wp|wx) = 1.
Algorithm compiled from span program:
@ Run phase estimation up to precision
s lwol

max, cr( 0y 11wl

@ Run amplitude estimation on top of that up to
precision
1

e = .
o)l - max, ¢ s~ ) llw)

Span program unitary:

Ux) +H— =

|

Run phase estimation with initial state |wp) / |||wo)||-

Outcome distribution:

— Rauwx

Rker(a)

-6 0 o6

with & — vl

_ 1
Mol 2" €= o M
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Span programs — algorithm construction

Witnesses of positive and negative instances: Span program unitary:

@ Positive witness:
x st Alwk) = |7). n *
I} € H(x), st Alwi) = ) Ux) — =— Rue — Rke(a) [~
© Negative witness: - — | -
|wx) € H(x)L Nker(A)L, s.t. (wp|wx) = 1.

Algorithm compiled from span program:

|

Run phase estimation with initial state |wp) / |||wo)||-
Outcome distribution:

@ Run phase estimation up to precision

s lim)]
max (- n) 1w
£ pos
@ Run amplitude estimation on top of that up to neg
precision
1
€= .
[wo) || - max, ¢ (1) (g Illwx) I I I
No. calls to U(x) is -5 0 &
1
o(—)=0 max wx)|| - max w . ; — llwo) |l _ 1
(65) <X6f<—n(1) i xef-1)(0) i X>”> with & = o and € = oS Taey -
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Span programs — algorithm analysis
Shorthand notation:

Wi= max |[[[w)|* and  W_= max [w]*.
xef(=1)(1) xef(=1)(0)
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Span programs — algorithm analysis

Shorthand notation:

W, = max w )| and W_ = max Wl
= max sl

Implementation cost of the algorithm compiled from a span program:

Type Cost

No. calls to Rier(a) O(/ Wi W_)
No. calls to Ry, O/ Wi W_)
No. calls to Cj,) O(VWiW_)
No. calls to Ry O(VWiW_)
No. extra gates O(polylog W, W_)
No. extra qubits O(polylog W, W_)
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Span programs compiled from algorithms (I)
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Span programs compiled from algorithms (I)

Span program Quantum algorithm B]
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Span programs compiled from algorithms (I)

[Quantum algorithm A Span program Quantum algorithm B]
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Span programs compiled from algorithms (1)

index {

workspace

R

[=X=X=X=) [=X=X=]

A

Ivbo(x))

. . . f(x))
ha(x)) b5 (x))  |vs(x)) [r-1(x))

[1(x) [h2(x)) |¢3(x))

7 (x))

o F = = £ DAl
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Span programs compiled from algorithms (1)

{ og ------- 0§
index{ |0)— —/—1O0x—/— 1 0/ /0~ 0
- = = = S T 0
k O A L . ) ST . M VS ) 0
workspace 8§ o 8%
0 T T T T T T . f(X)>
[Po(x)) [¥1(x)) Ivh2(x)) |b3(x)) [a(x)) [¥s(x)) [whe(x)) [br-1(x))  |¥7(x))
Q [to(x)) =100---00).
Q [¢7(x)) =100---0f(x)).
=} =2 = E E DA
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Span programs compiled from algorithms (1)

{ og ------- 0§
index{ |0)— —/—1O0x—/— 1 0/ /0~ 0
o—-— +—— 4 —— — = 0
k O A L . ) ST . M VS ) 0

workspace 8§ o 8%

0 T T T I Y f(X)>
[ho(x)) [1(x)) |v2(x)) |s(x)) [a(x)) [¥s(x)) [e(x)) [hr-1(x))  |7(x))

Q [¢o(x)) =00---00).
Q [¢7(x)) =100---0f(x)).
© Every U; can only consist of

O(polylog(T)) elementary gates.

=} =2 = E E DA
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Span programs compiled from algorithms (1)

{ og ------- 0§
index{ |0)—/—  —/—0x—— 1 HHOx— /0"~ 0
o—-— +—— 4 —— — = 0
k O A L . ) ST . M VS ) 0

workspace 8§ 8%

0 T T T I Y f(X)>
[ho(x)) [1(x)) |v2(x)) |s(x)) [a(x)) [¥s(x)) [e(x)) [hr-1(x))  |7(x))

Q [¢o(x)) =00---00). © S: Query complexity
Q [¢7(x)) =100---0f(x)).
© Every U; can only consist of

O(polylog(T)) elementary gates.

=] =2 = E E DA
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Span programs compiled from algorithms (1)

{ og ------ 0§
index 1) — —O.—H +—HH +—HO,—~ O, 0
-+t T ] 0
k O A L . ) ST . M VS ) 0

workspace 8§ 8%

0 T T T I Y f(X)>
[Po(x)) [¥1(x)) Ivh2(x)) |b3(x)) [a(x)) [¥s(x)) [whe(x)) [br-1(x))  |¥7(x))

Q [¢o(x)) =00---00). © S: Query complexity
Q |¢71(x)) =100---0f(x)). @ T: No. time steps
© Every U; can only consist of

O(polylog(T)) elementary gates.

=} F = = £ Haw
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Span programs compiled from algorithms (1)

(& Eon & abal gUSe ;
index 4 0)—  —/—Ox—/— 1 —O0x+— 10—~ 0
- = = =+ 0
k O A L . ) ST . M VS ) 0
workspace 8§ . 8%
0 T T T I Y f(X)>
[o(x)) [¥1(x)) [2(x)) [¥3(x)) [a(x)) [¥s(x)) |ve(x)) lr-1(x))  [¥7(x)
Q [¢o(x)) =00---00). © S: Query complexity
Q |¢71(x)) =100---0f(x)). @ T: No. time steps
@ Every U; can only consist of © k: No. qubits
O(polylog(T)) elementary gates.
=} =2 = E E DA
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Span programs compiled from algorithms (1)

(e 208 8 Son ohos °§
index 4 0)—  —/—Ox—/— 1 —O0x+— 10—~ 0
- = T T 0
k O A L . ) ST . M VS ) 0
workspace 8§ o 8%
0 T T T I Y f(X)>
[Yo(x)) |¥1(x)) |2(x)) Ivs(x)) [va(x)) [¥s(x)) |¥e(x)) [Yr—1(x)) |7 (x))
Q [¢o(x)) =00---00). © S: Query complexity
Q |¢71(x)) =100---0f(x)). @ T: No. time steps
@ Every U; can only consist of © k: No. qubits
O(polylog(T)) elementary gates. @ &: Error probability
=] =2 = E E DA
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Span programs compiled from algorithms (II)
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Index Workspace
ctn w
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Time Index Workspace
cl™o cln w
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Time Index Workspace
cl™o cln w

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

A.J. Cornelissen (QuSoft — UvA) Span programs and time complexity

June 22nd, 2020 arXiv:2005.01323

12/18



Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Time Index Workspace
cl™o cln w

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =]0)|00---00) — |T)|00---01).
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Time Index Workspace
cl™o cln w

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =]0)|00---00) — |T)|00---01).

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Problems:

Time Index Workspace
cl™o cln w

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =]0)|00---00) — |T)|00---01).

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

. Problems:
Time Index Workspace
clmho cln w @ The definition of A depends on x.
Solved by making # a little larger when
® ® t+ 1 is a query time step.

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =]0)|00---00) — |T)|00---01).

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

. Problems:
Time Index Workspace
clmho cln w @ The definition of A depends on x.
Solved by making # a little larger when
® ® t+ 1 is a query time step.

@ The witness size Wy = O(T).
Solved by tuning some weights.
Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =]0)|00---00) — |T)|00---01).

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

. Problems:
Time Index Workspace
clmho cln w @ The definition of A depends on x.
Solved by making # a little larger when
® ® t+ 1 is a query time step.

@ The witness size Wy = O(T).
Solved by tuning some weights.

Span program operator A:

Aft difications:
16 1) 2 [6) [9) = [¢ + 1) Unsr [, er some moditications

Target vector |7): |7) =0)|00---00) — |T)|00---01). W, = O(S) and W_ = O(S)

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.
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Span programs compiled from algorithms (II)

Hilbert space H & target space V:

Index Workspace
ctn w

Time
cl™o

Span program operator A:

1) [9) B 1) 1) — [t + 1) Upa [9)

Target vector |7): |7) =0)|00---00) — |T)|00---01).

Core idea:
T-1

wa) := D (1) [9he(x)) A 10) [0 (x)) — | T) [br(x)
t=0

= 10)[00---00) — |T)[00-- - 0F(x)),

which equals |7) for positive instances.

A.J. Cornelissen (QuSoft — UvA)

Span programs and time complexity

Problems:

@ The definition of A depends on x.
Solved by making # a little larger when
t+ 1 is a query time step.

@ The witness size Wy = O(T).

Solved by tuning some weights.

After some modifications:

Wy = O(S) and W_ = O(S).

Hence number of calls to the subroutines is
O(

WL W_) = O(S).

June 22nd, 2020 arXiv:2005.01323 12/18



Implementation of the subroutines of the algorithm span program
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Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of Ryer(a), Ra(x): Clug) and Rjoy.-
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Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of Ryer(a), Ra(x): Clug) and Rjoy.-
We require the following oracles:

Ox |1y = (=1)9 i), O |ty ) — |t) Ut [0) and Os @ |t) — (=1)€5 |t)

A.J. Cornelissen (QuSoft — UvA) Span programs and time complexity June 22nd, 2020 arXiv:2005.01323 13/18



Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of Ryer(a), Ra(x): Clug) and Rjoy.-

We require the following oracles:

Oy i)y = (=1)9 i), O4:

and

[t) |¢) = [t) Ur [¢))

Analysis of the implementation of the subroutines:

Os : |t) = (~1)*° |t)

No. extra qubits  Implementation

Subroutine Queries Queries Queries No. extra gates
to Ox to Og to Oy error

Rey |0 O(T/S)  O(T/S)  O(T/Spolylog(T))  Olpolylog(T)) 0

Ruy | ©O(1) o@) 0 O(polylog(T)) o(1) 0
wy | O O(T/S)  O(T/S) O(T/Spolylog(T))  O(polylog(T)) O(v?)
Roy | 0 0 0 O(log(T)) O(log(T)) 0(v%)
Total o(S) o(T) o(T) O(T polylog(T)) O(polylog(T)) O(S5/¢)
With error red. | O(Slog(S)) O(Tlog(S)) O(Tlog(S)) O(T polylog(T)) O(polylog(T)+k°M)  O(/z)
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Implementation of the subroutines of the algorithm span program

It remains to calculate the implementation cost of Ryer(a), Ra(x): Clug) and Rjoy.-

We require the following oracles:

Oy i)y = (=1)9 i), O4:

[t) |¢) = [t) Ur [¢))

Analysis of the implementation of the subroutines:

Os : |t) = (~1)*° |t)

No. extra qubits  Implementation

Subroutine Queries Queries Queries No. extra gates
to Oy to Og to Oy
Rey |0 O(T/S)  O(T/S)  O(T/Spolylog(T))  Olpolylog(T))
Ruy | O O() 0 O(polylog(T))
wy | O O(T/S)  O(T/S) O(T/Spolylog(T))  O(polylog(T))
Rio) 0 0 0 O(log(T))
Total o(S) o(T) o(T) O(T polylog(T)) O(polylog(T))
With error red. | O(Slog(S)) O(Tlog(S)) O(Tlog(S)) O(T polylog(T)) O(polylog(T)+k°M)  O(/z)

Efficient uniform access: implementation of O 4 and Og only takes O(polylog(T)) gates.
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.

CclTo clinl w

log(T) qubits k qubits
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.

@ Reflecting through the all-zeros state

naively takes O(k + log(T)) gates.
CclTo clinl w

log(T) qubits k qubits
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.

@ Reflecting through the all-zeros state
naively takes O(k + log(T)) gates.

s CclTo clinl w
@ Core idea:
® &
log(T) qubits k qubits
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.

@ Reflecting through the all-zeros state
naively takes O(k + log(T)) gates. . o
© Core idea: S £ 4

@ We define an implementing subspace:
Hy = span{|t) [1¢(x)) : t € [Tlo},

log(T) qubits k qubits
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.
@ Reflecting through the all-zeros state
naively takes O(k + log(T)) gates.
© Core idea: e c 4

@ We define an implementing subspace:
Hy = span{|t) [1¢(x)) : t € [Tlo},

@ We prove that Ryer(a), Ray(x), Clw,) and log(T) qubits k qubits
Rjoy leave this space invariant.
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.
@ Reflecting through the all-zeros state
naively takes O(k + log(T)) gates.
© Core idea: e c 4

@ We define an implementing subspace:
Hy = span{|t) [1¢(x)) : t € [Tlo},

@ We prove that Ryer(a), Ray(x), Clw,) and log(T) qubits k qubits
Rjoy leave this space invariant.

© We prove that implementing Ry on this
space can be done in O(log(T)) gates.
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Implementing subspace

@ The state space is O(k + log(T)) qubits
in size.

@ Reflecting through the all-zeros state
naively takes O(k + log(T)) gates. . o
© Core idea: S £ 4

@ We define an implementing subspace:
Hy = span{|t) [1¢(x)) : t € [Tlo},

@ We prove that Ryer(a), Ray(x), Clw,) and log(T) qubits k qubits
Rjoy leave this space invariant.

© We prove that implementing Ry on this
space can be done in O(log(T)) gates.

@ Technique of independent interest.
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Application: variable-time search
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,

each computing a function f; : {0,1}™ — {0,1}.
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,
each computing a function f; : {0,1}™ — {0,1}.

© S;: Query complexity
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,
each computing a function f; : {0,1}™ — {0,1}.
© S;: Query complexity

@ T;: No. time steps
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,

each computing a function f; : {0,1}™ — {0,1}.
© S;: Query complexity
@ T;: No. time steps

© ki No. qubits
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Application: variable-time search

Suppose we have n algorithms {A;}7_;,
each computing a function f; : {0,1}™ — {0,1}.
© S;: Query complexity
@ T;: No. time steps
© ki No. qubits
© =, Error probability
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,

each computing a function f; : {0,1}™ — {0,1}. We are given access to these algorithms through
© S;: Query complexity

@ T;: No. time steps

© ki No. qubits

© =, Error probability
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Application: variable-time search

Suppose we have n algorithms {A;}7_;,

each computing a function f; : {0,1}™ — {0,1}. ‘
Q S;: Query complexity Q O.: i) li) = (1% Li) I,
@ T;: No. time steps
© ki No. qubits
© =, Error probability

We are given access to these algorithms through
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Application: variable-time search

n

Suppose we have n algorithms {A;}

ar W, i hese algorithms through
each computing a function f/ . {0, 1}"’1 N {07 1}_ e are given access to these algorithms throug
. .. 0.
© S;: Query complexity Q Ox: )iy = (=1)5" iy |#),
@ Tj: No. time steps Q@ 0. Inlw) = i) le) U ),

© ki No. qubits
© =, Error probability
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Application: variable-time search

n

Suppose we have n algorithms {A;}

ar W, i hese algorithms through
each computing a function f/ . {0, 1}"’1 N {07 1}_ e are given access to these algorithms throug
. .. 0.
© S;: Query complexity Q Ox: )iy = (=1)5" iy |#),
@ Tj: No. time steps Q@ 0. Inlw) = i) le) U ),

© ki No. qubits

Os < i) [t) = (=1)1<S7 ) |) .
© =, Error probability © Os:lhln =~ (-1 Ak
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Application: variable-time search

n

Suppose we have n algorithms {A;}

ar W, i hese algorithms through
each computing a function f/ . {0, 1}"’1 N {07 1}_ e are given access to these algorithms throug
. .. 0.
© S;: Query complexity Q Ox: )iy = (=1)5" iy |#),
@ Tj: No. time steps Q@ 0. Inlw) = i) le) U ),

© ki No. qubits

. U) .
© <;: Error probabilit © Os: 1)ty = (1) €T ) [t).
Ej: rror pri (L) y

Now, we define the OR: f(x(), ... x(M) = f(xMW) Vv H(xP) V... v f(x(").
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n

Suppose we have n algorithms {A;}

ar W, i hese algorithms through
each computing a function f/ . {0, 1}"’1 N {07 1}_ e are given access to these algorithms throug
. .. 0.
© S;: Query complexity Q Ox: )iy = (=1)5" iy |#),
@ Tj: No. time steps Q@ 0. Inlw) = i) le) U ),

© ki No. qubits

Os < i) [t) = (=1)1<S7 ) |) .
© =, Error probability © Os:lhln =~ (-1 Ak

Now, we define the OR: f(x(1), ..., x(M) = A(xW) v H(x@D) Vv .-V fi(x(M).
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Application: variable-time search

Suppose we have n algorithms {Aj}J’?Zl,

each computing a function £;  {0,1}™ — {0,1}. We are given access to these algorithms through
. o 0
(1) S;: Query complexity o Ox )y i)y = (=105 iy iy,
@ Tj: No. time steps Q O li)Ie) ) = i} 18y U ),

© ki No. qubits

. U) .
© <;: Error probabilit © Os: 1)ty = (1) €T ) [t).
Ej: rror pri (L) y

Now, we define the OR: f(x(1), ..., x(M) = A(xW) v H(x@D) Vv .-V fi(x(M).
Variable-time search: how quickly can we compute 77?7

Method No. queries to Ox No. queries No. extra gates
to Oy & Og
Naive approach 1S i1 T O, T))
n: 52

Ambainis 06 (1) (9(1/ /. j) X ?
Ambainis '06 (Il) | © ( /S TJ?) o ( /S TJ?) ?
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Composition of span programs

Quantum algorithm Al}—{Span program P;

OR Span program P]

Quantum algorithm A3]—>[Span program P3 T~
[Quantum algorithm B]

[
[Quantum algorithm Az]—{Span program P>
[
[

Quantum algorithm A4]—>[Span program Py
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Composition of span programs

Quantum algorithm Al}—{Span program P;

OR Span program P]

Quantum algorithm A3]—>[Span program P3 T~
[Quantum algorithm B]

[
[Quantum algorithm Ag]—)[Span program P>
[
[

Quantum algorithm A4]—>[Span program Py

The composition of span programs for OR is known (Reichardt, '09).
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Algorithm for variable time search

Careful construction of the subroutines Rier(a), Ry(x): Clwg) and Rjgy yields:
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Algorithm for variable time search

Careful construction of the subroutines Rier(a), Ry(x): Clwg) and Rjgy yields:

Method No. queries to Oy No. queries No. extra gates Error probability
to O4 & Og

Naive approach 1S 1 T 5(21":1 T;) o (ZJ'-’:I €j>
Ambainis '06 (1) | © ( S sj?) X ? .
Ambainis 06 (I1) (9( > TJ?) o( P Tf) ? -

Our result o (\/ijl SJQ) o <\/ZJ":1 Tf) o (\/Zj"zl Tf) o (Z}’Zl SJ? > sj)
With error red. o ( > sz o ( PRy TJZ) o ( > Tf) O(emax)
g :
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© Make the construction more efficient w.r.t. the error probability.

A.J. Cornelissen (QuSoft — UvA) Span programs and time complexity June 22nd, 2020 arXiv:2005.01323 18/18



Summary

Our results:
© Implementation cost of span programs in terms of subroutines.
@ Construction algo = span program =- algo that preserves time complexity.
© Application to variable time search.
Open problems:
© Make the construction more efficient w.r.t. the error probability.

@ Extend to more composition results, for instance composition for k-threshold?

A.J. Cornelissen (QuSoft — UvA) Span programs and time complexity June 22nd, 2020 arXiv:2005.01323

18/18



Summary

Our results:
© Implementation cost of span programs in terms of subroutines.
@ Construction algo = span program =- algo that preserves time complexity.
© Application to variable time search.
Open problems:
© Make the construction more efficient w.r.t. the error probability.
@ Extend to more composition results, for instance composition for k-threshold?

© Figure out the time complexity of Belovs's k-element distinctness algorithm.
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Summary

Our results:
© Implementation cost of span programs in terms of subroutines.
@ Construction algo = span program =- algo that preserves time complexity.
© Application to variable time search.
Open problems:
© Make the construction more efficient w.r.t. the error probability.
@ Extend to more composition results, for instance composition for k-threshold?
© Figure out the time complexity of Belovs's k-element distinctness algorithm.
Thanks for your attention!
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