Introduction to quantum algorithms

Arjan Cornelissen
IRIF, Paris, France
April 27th, 2023

DERECHERCHE EN INIORMATIOUE

 I:ONDAMENTALE
Introduction to quantum algorithms

Non-permanent's seminar?

Arjan Cornelissen
IRIF, Paris, France
April 27th, 2023

11^{10} mssur DERECHERCHE EN INIORMATIOUE I:ONDAMENTALE

Introduction to quantum algorithms

Non-permanent's seminar? - Doc-postdoc seminar?

Arjan Cornelissen
IRIF, Paris, France
April 27th, 2023

11^{10} mssur DERECHERCHE EN INIORMATIOUE I:ONDAMENTALE

Introduction to quantum algorithms

Non-permanent's seminar? - Doc-postdoc seminar? - Junior seminar?

Arjan Cornelissen
IRIF, Paris, France
April 27th, 2023

11^{10} mssur DERECHERCHE EN INIORMATIOUE I:ONDAMENTALE

Introduction to quantum algorithms

> Non-permanent's seminar? - Doc-postdoc seminar? - Junior seminar?
$-P \neq N P$ seminar?

Arjan Cornelissen
IRIF, Paris, France
April 27th, 2023

1r1" DERECHERCHE EN INIORMATIOUE I:ONDAMENTALE

Introduction to quantum algorithms

> Non-permanent's seminar? - Doc-postdoc seminar? - Junior seminar?

- $P \neq$ NP seminar? - ???

Arjan Cornelissen
IRIF, Paris, France

April 27th, 2023

1以1: DERECHERCHE EN INIORMATIOUE I:ONDAMENTALE

Introduction to quantum algorithms
 Non-permanent's seminar? - Doc-postdoc seminar? - Junior seminar?
 $-P \neq N P$ seminar? - ???

Arjan Cornelissen

IRIF, Paris, France

$$
\text { April 27th, } 2023 \text { - (Koningsdag / King's day) }
$$

|l||

 EN INI:ORMATIOUE I:ONDAMENTALE
Koningsdag / King's day

Koningsdag / King's day

Koningsdag / King's day

Koningsdag / King's day

Koningsdag / King's day

Overview

Plan for today:
(1) Quantum algorithms
(2) Grover's algorithm
(3) Application: collision finding

Quantum algorithms

FACT BASED INSIGHT

The emerging quantum stack and its challenges

Quantum algorithms

Ingredients:

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Operations - unitary operators
$U_{1}, \ldots, U_{T} \in \mathcal{U}(\mathcal{H})$.
$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto} \cdots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Operations - unitary operators
$U_{1}, \ldots, U_{T} \in \mathcal{U}(\mathcal{H})$.
$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto} \cdots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Operations - unitary operators
$U_{1}, \ldots, U_{T} \in \mathcal{U}(\mathcal{H})$.
$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto} \cdots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Operations - unitary operators
$U_{1}, \ldots, U_{T} \in \mathcal{U}(\mathcal{H})$.
$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto} \ldots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.
(9) Measurement $-S_{1}, \ldots, S_{m} \subseteq \mathcal{H}$ s.t. $\mathcal{H}=\bigoplus_{j=1}^{m} S_{j}$.

Quantum algorithms

Ingredients:
(1) State space $-\mathcal{H}$.
(2) Initial state $-\left|\psi_{0}\right\rangle \in \mathcal{H}, \|\left|\psi_{0}\right\rangle \|=1$.
(3) Operations - unitary operators
$U_{1}, \ldots, U_{T} \in \mathcal{U}(\mathcal{H})$.
$\left|\psi_{0}\right\rangle \stackrel{U_{1}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\mapsto}\left|\psi_{2}\right\rangle \stackrel{U_{3}}{\mapsto} \ldots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.
(9) Measurement $-S_{1}, \ldots, S_{m} \subseteq \mathcal{H}$ s.t. $\mathcal{H}=\bigoplus_{j=1}^{m} S_{j}$.
Result: Probability of outcome $j \in\{1, \ldots, m\}$:

$$
\mathbb{P}[j]=\| \Pi_{S_{j}}\left|\psi_{T}\right\rangle \|^{2}
$$

Unstructured search

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

Unstructured search

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

(2) Worst case: n queries.

Unstructured search

Quantum access model:

Problem: (Unstructured search)
(1) Input: $x \in\{0,1\}^{n}$.
(2) Output:

- If $x \neq 0^{n}$, output $j \in\{1, \ldots, n\}$ s.t. $x_{j}=1$.
- If $x=0^{n}$, output "NO SOLUTION".

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

(2) Worst case: n queries.
(1) Oracle: $O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle$.

$$
O_{x}=\left[\begin{array}{cccc}
(-1)^{x_{1}} & 0 & \cdots & 0 \\
0 & (-1)^{x_{2}} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & (-1)^{x_{n}}
\end{array}\right]
$$

Unstructured search

Quantum access model:

(1) Oracle: $O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle$.

$$
O_{x}=\left[\begin{array}{cccc}
(-1)^{x_{1}} & 0 & \cdots & 0 \\
0 & (-1)^{x_{2}} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & (-1)^{x_{n}}
\end{array}\right]
$$

(2) Example: $x=01 \in\{0,1\}^{2}$:

Classical access model: $j \mapsto x_{j}$.
Classical algorithm:
(1) Query all bits, stop when you find a 1 .

$$
O_{x}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(2) Worst case: n queries.

Unstructured search

Quantum access model:

(1) Oracle: $O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle$.

$$
O_{x}=\left[\begin{array}{cccc}
(-1)^{x_{1}} & 0 & \cdots & 0 \\
0 & (-1)^{x_{2}} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & (-1)^{x_{n}}
\end{array}\right]
$$

(2) Example: $x=01 \in\{0,1\}^{2}$:

$$
O_{x}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad-\operatorname{ccc}|1\rangle
$$

Quantum algorithm: of the form $\left|\psi_{0}\right\rangle \stackrel{O_{x}}{\mapsto}\left|\psi_{1}\right\rangle \stackrel{U_{2}}{\longmapsto}\left|\psi_{2}\right\rangle \stackrel{O_{x}}{\mapsto}\left|\psi_{3}\right\rangle \stackrel{U_{4}}{\mapsto} \cdots \stackrel{U_{T}}{\mapsto}\left|\psi_{T}\right\rangle$.

Grover's algorithm [Gro'96] (1/2)

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}+\sqrt{\frac{3}{4}} \cdot \underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]}, \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}+\sqrt{\frac{3}{4}} \cdot \underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]}
\end{array}, \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .\right.}_{\left|s^{\perp}\right\rangle} \begin{array}{l}
\text { In general: We can write } x_{s}=1 \text {. Then: }
\end{array} \quad O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle
\end{aligned}
$$

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}_{|s\rangle}+\sqrt{\frac{3}{4}} \cdot \underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]}_{\left|s^{\perp}\right\rangle}, \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] . \\
& \text { (3) In general: We can write } x_{s}=1 \text {. Then: }
\end{aligned}
$$

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\frac{1}{\sqrt{n}} \sum_{\substack{j=1 \\ j \neq s}}^{n}|j\rangle
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}+\sqrt{\frac{3}{4}} \cdot \underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]}_{\left|s^{\perp}\right\rangle}, \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] . \\
& \text { In general: We can write } x_{s}=1 \text {. Then: } \quad O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle
\end{aligned}
$$

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\frac{1}{\sqrt{n}} \sum_{\substack{j=1 \\ j \neq s}}^{n}|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{\frac{n-1}{n}} \cdot \underbrace{\frac{1}{\sqrt{n-1}} \sum_{\substack{j=1 \\ j \neq s}}^{n}|j\rangle}_{\left|s^{\perp}\right\rangle} .
$$

Grover's algorithm [Gro'96] (1/2)

(1) Assumption: $|x|=1$.
(2) Example: when $x=1000 \in\{0,1\}^{4}$:

$$
\left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\frac{1}{\sqrt{4}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{4}}[\begin{array}{l}
{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}+\sqrt{\frac{3}{4}} \cdot \underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]}_{|s| l}, \quad O_{x}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

(3) In general: We can write $x_{s}=1$. Then:

$$
O_{x}:|j\rangle \mapsto(-1)^{x_{j}}|j\rangle
$$

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle:=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\frac{1}{\sqrt{n}} \sum_{\substack{j=1 \\
j \neq s}}^{n}|j\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{\frac{n-1}{n}} \cdot \underbrace{\frac{1}{\sqrt{n-1}} \sum_{\substack{j=1 \\
j \neq s}}^{n}|j\rangle .}_{\left|s^{\perp}\right\rangle} \\
& \text { Conclusion: }
\end{aligned}
$$

(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$.
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.

$$
\begin{aligned}
\varphi= & \arcsin \frac{1}{\sqrt{n}} \\
& (2 k+1) \varphi \approx \frac{\pi}{2} .
\end{aligned}
$$

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations: Repeat $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ times:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.

$$
\begin{aligned}
\varphi= & \arcsin \frac{1}{\sqrt{n}} \\
& (2 k+1) \varphi \approx \frac{\pi}{2} .
\end{aligned}
$$

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations: Repeat $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ times:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.
(1) Measurement: $S_{j}=\operatorname{Span}\{|j\rangle\}$.

$$
\begin{aligned}
\varphi= & \arcsin \frac{1}{\sqrt{n}} \\
& (2 k+1) \varphi \approx \frac{\pi}{2} .
\end{aligned}
$$

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations: Repeat $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ times:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.
(1) Measurement: $S_{j}=\operatorname{Span}\{|j\rangle\}$.
(9) $\mathbb{P}[s] \geq 1-1 / n$.

$(2 k+1) \varphi \approx \frac{\pi}{2}$.

Grover's algorithm [Gro'96] (2/2)

(1) Assumption: $|x|=1$.
(2) Observations:
(1) $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}}|s\rangle+\sqrt{1-\frac{1}{n}}\left|s^{\perp}\right\rangle$
(2) $O_{x}|s\rangle=-|s\rangle$ and $O_{x}\left|s^{\perp}\right\rangle=\left|s^{\perp}\right\rangle$.
(3) Grover's algorithm:
(1) State space: $\mathcal{H}=\mathbb{C}^{n}$.
(2) Initial state: $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(3) Operations: Repeat $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ times:
(1) Apply O_{x}.
(2) Reflect through $\left|\psi_{0}\right\rangle$.
(1) Measurement: $S_{j}=\operatorname{Span}\{|j\rangle\}$.
(9) $\mathbb{P}[s] \geq 1-1 / n$.

(5) $k=O(\sqrt{n})$ queries - Quadratic improvement!

Improvements of Grover's algorithm

Improvements of Grover's algorithm

(1) If $|x|>0$:

$$
|s\rangle=\frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ \chi_{j}=1}}^{n}|j\rangle,\left|s^{\perp}\right\rangle=\frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_{j}=0}}^{n}|j\rangle .
$$

Improvements of Grover's algorithm

(1) If $|x|>0$:

$$
|s\rangle=\frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ x_{j}=1}}^{n}|j\rangle,\left|s^{\perp}\right\rangle=\frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_{j}=0}}^{n}|j\rangle .
$$

$(2 k+1) \varphi \approx \frac{\pi}{2}$.

Improvements of Grover's algorithm

(1) If $|x|>0$:

$$
|s\rangle=\frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ x_{j}=1}}^{n}|j\rangle,\left|s^{\perp}\right\rangle=\frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_{j}=0}}^{n}|j\rangle .
$$

(2) If we know $|x|$:

- $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ iterations.
- $k=O(\sqrt{n /|x|})$ queries.

Improvements of Grover's algorithm

(1) If $|x|>0$:

$$
|s\rangle=\frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ x_{j}=1}}^{n}|j\rangle,\left|s^{\perp}\right\rangle=\frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_{j}=0}}^{n}|j\rangle .
$$

(2) If we know $|x|$:

- $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ iterations.
- $k=O(\sqrt{n /|x|})$ queries.
(3) If we don't know $|x|$:
- Guess $|x|=n,|x|=n / 2,|x|=n / 4$, etc.
- Check if outcome j satisfies $x_{j}=1$.
- Output "NO SOLUTION" if all tries failed.

$(2 k+1) \varphi \approx \frac{\pi}{2}$.

Improvements of Grover's algorithm

(1) If $|x|>0$:

$$
|s\rangle=\frac{1}{\sqrt{|x|}} \sum_{\substack{j=1 \\ x_{j}=1}}^{n}|j\rangle,\left|s^{\perp}\right\rangle=\frac{1}{\sqrt{n-|x|}} \sum_{\substack{j=1 \\ x_{j}=0}}^{n}|j\rangle .
$$

(2) If we know $|x|$:

- $k=\left\lfloor\frac{\pi}{4 \varphi}\right\rfloor$ iterations.
- $k=O(\sqrt{n /|x|})$ queries.
(3) If we don't know $|x|$:
- Guess $|x|=n,|x|=n / 2,|x|=n / 4$, etc.
- Check if outcome j satisfies $x_{j}=1$.
- Output "NO SOLUTION" if all tries failed.

Total queries to $O_{x}: O(\sqrt{n})$.

$(2 k+1) \varphi \approx \frac{\pi}{2}$.

Application: Collision finding [BHT'97]

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$. Classical algorithm:
(1) Query in random order.

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Classical algorithm:
(1) Query in random order.
. C

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Classical algorithm:
(1) Query in random order.

$$
C \cdot \cdot B
$$

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

Application: Collision finding [BHT'97]

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Classical algorithm:
(1) Query in random order.

$$
C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).

Application: Collision finding [BHT'97]

Quantum algorithm:

(1) Query k random elements in the list.

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.

$$
\begin{array}{l|llllll}
x & B & C & A & C & A & B \\
& B & C & . & . & . & .
\end{array}
$$

(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$.

Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).

Application: Collision finding [BHT'97]

Quantum algorithm:

(1) Query k random elements in the list.

Problem: (Collision finding)
(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$. Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).
(2) Let $y \in\{0,1\}^{n}$ with y_{j} if j forms a collision with any of the already queries entries.

x	B	C	A	C	A	B
	B	C	\cdot	\cdot	\cdot	\cdot
y	0	0	0	1	0	1

Application: Collision finding [BHT'97]

Quantum algorithm:

(1) Query k random elements in the list.

Problem: (Collision finding)
(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$. Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).
(2) Let $y \in\{0,1\}^{n}$ with y_{j} if j forms a collision with any of the already queries entries.

x	B	C	A	C	A	B
		C	C	\cdot	\cdot	\cdot
.						

- $|y|=k$.

Application: Collision finding [BHT'97]

Quantum algorithm:

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$. Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).
(1) Query k random elements in the list.
(2) Let $y \in\{0,1\}^{n}$ with y_{j} if j forms a collision with any of the already queries entries.

x	B	C	A	C	A	B
y	B	C	\cdot	\cdot	\cdot	\cdot
y	0	0	0	1	0	1

- $|y|=k$.
- Grover: $O(\sqrt{n / k})$ queries.

Application: Collision finding [BHT'97]

Quantum algorithm:

(1) Query k random elements in the list.
(2) Let $y \in\{0,1\}^{n}$ with y_{j} if j forms a collision with any of the already queries entries.

x	B	C	A	C	A	B
	B	C	\cdot	\cdot	\cdot	\cdot
y	0	0	0	1	0	1

- $|y|=k$.
- Grover: $O(\sqrt{n / k})$ queries.
(3) Total queries: $O(k+\sqrt{n / k})$.
(2) $O(\sqrt{n})$ queries suffice (birthday paradox).

Application: Collision finding [BHT'97]

Quantum algorithm:

Problem: (Collision finding)

(1) Input: $x \in \mathcal{D}^{n},|\mathcal{D}|=n / 2$.

- Every element appears exactly twice in x.
- Example: $\mathcal{D}=\{A, B, C\}, n=6$, $x=B C A C A B$.
(2) Output: j, j^{\prime} such that $x_{j}=x_{j^{\prime}}$ and $j \neq j^{\prime}$. Classical algorithm:
(1) Query in random order.

$$
\cdot C \cdot C \cdot B
$$

(2) $O(\sqrt{n})$ queries suffice (birthday paradox).
(1) Query k random elements in the list.
(2) Let $y \in\{0,1\}^{n}$ with y_{j} if j forms a collision with any of the already queries entries.

x	B	C	A	C	A	B
	B	C	\cdot	\cdot	\cdot	\cdot
y	0	0	0	1	0	1

- $|y|=k$.
- Grover: $O(\sqrt{n / k})$ queries.
(3) Total queries: $O(k+\sqrt{n / k})$.
(9) Minimized for $k=\Theta\left(n^{1 / 3}\right)$.
(6) $O\left(n^{1 / 3}\right)$ queries - subquadratic improvement!

Summary

Summary:

(1) Quantum algorithms.
(2) Grover's algorithm:

- Quadratic improvement.
(3) Application: collision finding:
- Subquadratic improvement.

Summary

Summary:

(1) Quantum algorithms.
(2) Grover's algorithm:

- Quadratic improvement.
(3) Application: collision finding:
- Subquadratic improvement.

Thanks for your attention! cornelissen@irif.fr

