A self-contained, simplified analysis of span program algorithms

A.J. Cornelissen ${ }^{1}$,
S. Jeffery ${ }^{2}$, M. Ozols ${ }^{1}$
${ }^{1}$ QuSoft - UvA
${ }^{2}$ QuSoft - CWI

September 18th, 2020

Span programs - overview

Span programs - overview

```
Boolean function
f:{0,1\mp@subsup{}}{}{n}->{0,1}
```

Quantum algorithm
\mathcal{A}

Span programs - overview

Span programs - overview

Span programs - overview

Boolean function
 $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Quantum algorithm
 \mathcal{A}

Formula evaluation [RŠ12, Rei09, JK17]
st-connectivity [BR12]
cycle detection and bipartiteness testing [Āri16, CMB18]

Span programs - overview

Span programs - overview

Span programs - overview

Span programs - overview

> Boolean function
> $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Span programs - overview

> Boolean function
> $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Span programs - definition

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space." Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$. Five objects:

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,
(3) Span program operator: A : $\mathcal{H} \rightarrow \mathcal{V}$.

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,
(3) Span program operator: A : $\mathcal{H} \rightarrow \mathcal{V}$.

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:
$x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}$, for all $x \in\{0,1\}^{n}$,
(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,
(5) Span program operator: A : $\mathcal{H} \rightarrow \mathcal{V}$.

Span program: $\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$.

Span programs - definition

"A span program is an encoding of a boolean function into the geometry of a Hilbert space."
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Five objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspaces:

$$
x \mapsto \mathcal{H}(x) \subseteq \mathcal{H}, \text { for all } x \in\{0,1\}^{n},
$$

(3) Vector space: \mathcal{V},
(9) Target vector: $|\tau\rangle \in \mathcal{V}$,
(5) Span program operator: A : $\mathcal{H} \rightarrow \mathcal{V}$.

Span program: $\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$.
P evaluates f if:

Positive instances:	$x \in f^{(-1)}(1)$	\Leftrightarrow	$\|\tau\rangle \in A(\mathcal{H}(x))$
Negative instances:	$x \in f^{(-1)}(0)$	\Leftrightarrow	$\|\tau\rangle \notin A(\mathcal{H}(x))$

Reflection programs - definition

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"

Reflection programs - definition

"A reflection program is a stripped-down version of a span program" Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$. \mathcal{R} evaluates f if:

Positive instance:	$x \in f^{(-1)}(1)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \in \mathcal{K}+\mathcal{H}(x)$
Negative instance:	$x \in f^{(-1)}(0)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \notin \mathcal{K}+\mathcal{H}(x)$

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:
$x \mapsto \mathcal{H}(x)$ for all $x \in\{0,1\}^{n}$,
(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$. \mathcal{R} evaluates f if:

Positive instance:	$x \in f^{(-1)}(1)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \in \mathcal{K}+\mathcal{H}(x)$
Negative instance:	$x \in f^{(-1)}(0)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \notin \mathcal{K}+\mathcal{H}(x)$

Reflection programs - definition

"A reflection program is a stripped-down version of a span program"
Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Four objects:
(1) Hilbert space: \mathcal{H},
(2) Input-dependent subspace:

$$
x \mapsto \mathcal{H}(x) \text { for all } x \in\{0,1\}^{n}
$$

(3) Input-independent subspace: \mathcal{K}.

(9) Initial state: $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$ with $\|\left|w_{0}\right\rangle \|=1$.

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$. \mathcal{R} evaluates f if:

Positive instance:	$x \in f^{(-1)}(1)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \in \mathcal{K}+\mathcal{H}(x)$
Negative instance:	$x \in f^{(-1)}(0)$	\Leftrightarrow	$\left\|w_{0}\right\rangle \notin \mathcal{K}+\mathcal{H}(x)$

Conversions between span and reflection programs

Conversions between span and reflection programs

Conversions between span and reflection programs

Conversions between span and reflection programs

Conversions between span and reflection programs

Pos	$\left\|w_{0}\right\rangle \in \mathcal{K}+\mathcal{H}(x)$
Neg	$\left\|w_{0}\right\rangle \notin \mathcal{K}+\mathcal{H}(x)$

Conversions between span and reflection programs

$$
\begin{array}{c|l}
\text { Pos } & \left|w_{0}\right\rangle \in \mathcal{K}+\mathcal{H}(x) \\
\hline \text { Neg } & \left|w_{0}\right\rangle \notin \mathcal{K}+\mathcal{H}(x)
\end{array}
$$

Conversions between span and reflection programs

\mathcal{P}
\mathcal{R}

Szegedy's spectral lemma [Sze04]

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
Reflection program operator: $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$.

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
Reflection program operator: $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$.
(1) Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}\right)$,
(2) Acts as $-I$ on $\left(\mathcal{K} \cap \mathcal{H}(x)^{\perp}\right) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)\right)$.

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
Reflection program operator: $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$.
(1) Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}\right)$,
(2) Acts as $-I$ on $\left(\mathcal{K} \cap \mathcal{H}(x)^{\perp}\right) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)\right)$.
(3) The remainder decomposes into 2-dimensional rotation spaces with angles $\varphi_{1}, \ldots, \varphi_{n}$.

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
Reflection program operator: $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$.
(1) Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}\right)$,
(2) Acts as $-I$ on $\left(\mathcal{K} \cap \mathcal{H}(x)^{\perp}\right) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)\right)$.
(3) The remainder decomposes into 2-dimensional rotation spaces with angles $\varphi_{1}, \ldots, \varphi_{n}$.

Szegedy's spectral lemma [Sze04]

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
Reflection program operator: $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$.
(1) Acts as I on $(\mathcal{K} \cap \mathcal{H}(x)) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}\right)$,
(2) Acts as $-I$ on $\left(\mathcal{K} \cap \mathcal{H}(x)^{\perp}\right) \oplus\left(\mathcal{K}^{\perp} \cap \mathcal{H}(x)\right)$.
(3) The remainder decomposes into 2-dimensional rotation spaces with angles $\varphi_{1}, \ldots, \varphi_{n}$.
(9) $\Pi_{\mathcal{K}}$ and $\Pi_{\mathcal{H}(x)}$ commute with the projectors on all these spaces.

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$:

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$:

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$:

Thought experiment: run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With infinite precision,
call the outcome Φ.

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$:

Thought experiment: run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With infinite precision,
call the outcome Φ.

Decomposition of $\left|w_{0}\right\rangle$

Decomposition of $\left|w_{0}\right\rangle \in \mathcal{K}^{\perp}$:

Thought experiment: run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With infinite precision,
call the outcome Φ.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,

(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,

(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,

(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,

(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.
Total cost: $\Theta\left(\frac{1}{\delta \sqrt{\varepsilon}}\right)$ calls to $U(x)$.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.
(2) Distinguish between

Analysis of phase estimation:

$$
\mathbb{P}(\Phi=0) \leq \mathbb{P}\left(\Phi_{\delta}=0\right) \leq \delta^{2} \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]
$$

(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.
Total cost: $\Theta\left(\frac{1}{\delta \sqrt{\varepsilon}}\right)$ calls to $U(x)$.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Analysis of phase estimation:

$$
\mathbb{P}(\Phi=0) \leq \mathbb{P}\left(\Phi_{\delta}=0\right) \leq \delta^{2} \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right]
$$

We need to ensure that:
(1) For positive instances:
$\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{2 \delta^{2}}$.

Total cost: $\Theta\left(\frac{1}{\delta \sqrt{\varepsilon}}\right)$ calls to $U(x)$.

Finite precision

Positive instance:	$\mathbb{P}(\Phi=0)=0$,
Negative instance:	$\mathbb{P}(\Phi=0)>0$.

Finite precision algorithm:
(1) Run phase estimation
(1) With operator $U(x)$,
(2) With initial state $\left|w_{0}\right\rangle$,
(3) With precision $\delta>0$,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
by running amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.
Total cost: $\Theta\left(\frac{1}{\delta \sqrt{\varepsilon}}\right)$ calls to $U(x)$.

Analysis of phase estimation:
$\mathbb{P}(\Phi=0) \leq \mathbb{P}\left(\Phi_{\delta}=0\right) \leq \delta^{2} \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right]$,
We need to ensure that:
(1) For positive instances:
$\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{2 \delta^{2}}$.
(2) For negative instances:

$$
\mathbb{P}(\Phi=0) \geq \varepsilon .
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\mathbb{P}(\Phi=0)=\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2}
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \{\|\left|\omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}\}^{-1}
\end{aligned}
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \left\{\|| | \omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}\}^{-1}
\end{aligned}
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \left\{\|| | \omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}_{\text {Negative witnesses }}\}^{-1}
\end{aligned}
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \{\|\left|\omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}_{\text {Negative witnesses }}\}^{-1} \\
& \geq \frac{1}{\|\left|\omega_{x}\right\rangle \|^{2}}
\end{aligned}
$$

for any negative witness $\left|\omega_{x}\right\rangle$.

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \{\|\left|\omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}_{\text {Negative witnesses }}\}^{-1} \\
& \geq \frac{1}{\|\left|\omega_{x}\right\rangle \|^{2}}
\end{aligned}
$$

for any negative witness $\left|\omega_{x}\right\rangle$.

$$
W_{-}:=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \{\|\left|\omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}_{\text {Negative witnesses }}\}^{-1} \\
& \geq \frac{1}{\|\left|\omega_{x}\right\rangle \|^{2}}
\end{aligned}
$$

for any negative witness $\left|\omega_{x}\right\rangle$.

$$
W_{-}:=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2} \quad \Rightarrow \quad \mathbb{P}(\Phi=0) \geq \frac{1}{W_{-}}=: \varepsilon
$$

Negative witnesses

For all negative instances, we need to ensure that $\mathbb{P}(\Phi=0) \geq \varepsilon$.

$$
\begin{aligned}
\mathbb{P}(\Phi=0) & =\| \Pi_{\mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}}\left|w_{0}\right\rangle \|^{2} \\
& =\min \left\{\|| | \omega_{x}\right\rangle \|^{2}: \underbrace{\left|\omega_{x}\right\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp},\left\langle\omega_{x} \mid w_{0}\right\rangle=1}_{\text {Negative witnesses }}\}^{-1} \\
& \geq \frac{1}{\|\left|\omega_{x}\right\rangle \|^{2}}
\end{aligned}
$$

for any negative witness $\left|\omega_{\chi}\right\rangle$.

$$
W_{-}:=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2} \quad \Rightarrow \quad \mathbb{P}(\Phi=0) \geq \frac{1}{W_{-}}=: \varepsilon
$$

Shorter negative witnesses give better bounds.

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E} {\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} } \\
& \quad=\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K}^{\perp}}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\}
\end{aligned}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} \\
& \quad=\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K} \perp}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\}
\end{aligned}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
\mathbb{E} & {\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} } \\
& =\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K}^{\perp}}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\} \\
& =\min \{\|\left|w_{x}\right\rangle \|^{2}: \underbrace{\left|w_{x}\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}^{\perp}}\left|w_{x}\right\rangle=\left|w_{0}\right\rangle}\}
\end{aligned}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} \\
& \left.\quad=\sum_{j=1}^{n} \min \left\{\| \| w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K} \perp}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\} \\
& \quad=\min \{\|\left|w_{x}\right\rangle \|^{2}: \underbrace{\left|w_{x}\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}} \perp\left|w_{x}\right\rangle=\left|w_{0}\right\rangle}_{\text {Positive witnesses }}\}
\end{aligned}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} \\
& \quad=\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K} \perp}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\} \\
& \quad=\min \{\|\left|w_{x}\right\rangle \|^{2}: \underbrace{\left|w_{x}\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}} \perp\left|w_{x}\right\rangle=\left|w_{0}\right\rangle}_{\text {Positive witnesses }}\} \\
& \quad \leq \|\left|w_{x}\right\rangle \|^{2}
\end{aligned}
$$

for any positive witness $\left|w_{x}\right\rangle$.

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} \\
& \quad=\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K}} \perp\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\} \\
& \quad=\min \{\|\left|w_{x}\right\rangle \|^{2}: \underbrace{\left|w_{x}\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}} \perp\left|w_{x}\right\rangle=\left|w_{0}\right\rangle}_{\text {Positive witnesses }}\} \\
& \left.\quad \leq \| w_{x}\right\rangle \|^{2}
\end{aligned}
$$

for any positive witness $\left|w_{x}\right\rangle$.

$$
\left.W_{+}:=\max _{x \in f^{(-1)}(1)}\| \| w_{x}\right\rangle \|^{2}
$$

Positive witnesses

For all positive instances, we need to ensure that $\mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right] \leq \frac{\varepsilon}{\delta^{2}}$.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right]=\sum_{j=1}^{n} \frac{\| \Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle \|^{2}}{\sin ^{2}\left(\frac{\varphi_{j}}{2}\right)} \\
& \quad=\sum_{j=1}^{n} \min \left\{\|\left|w_{x}\right\rangle \|^{2}:\left|w_{x}\right\rangle \in \mathcal{H}(x) \cap R_{\varphi_{j}}, \Pi_{\mathcal{K} \perp}\left|w_{x}\right\rangle=\Pi_{R_{\varphi_{j}}}\left|w_{0}\right\rangle\right\} \\
& \quad=\min \{\|\left|w_{x}\right\rangle \|^{2}: \underbrace{\left|w_{x}\right\rangle \in \mathcal{H}(x), \Pi_{\mathcal{K}} \perp\left|w_{x}\right\rangle=\left|w_{0}\right\rangle}_{\text {Positive witnesses }}\} \\
& \left.\quad \leq \| w_{x}\right\rangle \|^{2}
\end{aligned}
$$

for any positive witness $\left|w_{x}\right\rangle$.

$$
W_{+}:=\max _{x \in f^{(-1)}(1)} \|\left|w_{x}\right\rangle \|^{2} \quad \Rightarrow \quad \mathbb{E}\left[\frac{1}{\sin ^{2}\left(\frac{\Phi}{2}\right)}\right] \leq W_{+}=: \frac{\varepsilon}{2 \delta^{2}}
$$

Summary of the algorithm

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

$$
\begin{aligned}
& W_{+}=\max _{x \in f(-1)(1)} \|\left|w_{x}\right\rangle \|^{2}, \\
& W_{-}=\max _{x \in f(-1)(0)} \|\left|\omega_{x}\right\rangle \|^{2} .
\end{aligned}
$$

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

$$
\begin{aligned}
& W_{+}=\max _{x \in f(-1)(1)} \|\left|w_{x}\right\rangle \|^{2}, \\
& W_{-}=\max _{x \in f(-1)(0)} \|\left|\omega_{x}\right\rangle \|^{2} .
\end{aligned}
$$

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

$$
\begin{aligned}
& W_{+}=\max _{x \in f(-1)(1)} \|\left|w_{x}\right\rangle \|^{2}, \\
& W_{-}=\max _{x \in f(-1)(0)} \|\left|\omega_{x}\right\rangle \|^{2} .
\end{aligned}
$$

Choose the finite precision parameters:
(1) $\varepsilon:=1 / W_{-}$,
(2) $W_{+}=\frac{\varepsilon}{2 \delta^{2}} \quad \Rightarrow \quad \delta:=1 / \sqrt{2 W_{-} W_{+}}$,

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

Choose the finite precision parameters:
(1) $\varepsilon:=1 / W_{-}$,
(2) $W_{+}=\frac{\varepsilon}{2 \delta^{2}} \quad \Rightarrow \quad \delta:=1 / \sqrt{2 W_{-} W_{+}}$,

Run the algorithm:
(1) Run phase estimation
(1) with operator $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$,
(2) with initial state $\left|w_{0}\right\rangle$,
(3) with precision δ,
call the outcome Φ_{δ}.

$$
\begin{aligned}
& W_{+}=\max _{x \in f(-1)}(1) \|\left|w_{x}\right\rangle \|^{2} \\
& W_{-}=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
\end{aligned}
$$

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

$$
\begin{aligned}
& W_{+}=\max _{x \in f^{(-1)}(1)} \|\left|w_{x}\right\rangle \|^{2} \\
& W_{-}=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
\end{aligned}
$$

Choose the finite precision parameters:
(1) $\varepsilon:=1 / W_{-}$,
(2) $W_{+}=\frac{\varepsilon}{2 \delta^{2}} \quad \Rightarrow \quad \delta:=1 / \sqrt{2 W_{-} W_{+}}$,

Run the algorithm:
(1) Run phase estimation
(1) with operator $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$,
(2) with initial state $\left|w_{0}\right\rangle$,

3 with precision δ,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
with amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.

Summary of the algorithm

Reflection program: $\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$.
(1) For all $x \in f^{(-1)}(1)$, find a positive witness $\left|w_{x}\right\rangle$,
(2) For all $x \in f^{(-1)}(0)$, find a negative witness $\left|\omega_{x}\right\rangle$,

$$
\begin{aligned}
& W_{+}=\max _{x \in f^{(-1)}(1)} \|\left|w_{x}\right\rangle \|^{2} \\
& W_{-}=\max _{x \in f^{(-1)}(0)} \|\left|\omega_{x}\right\rangle \|^{2}
\end{aligned}
$$

Choose the finite precision parameters:
(1) $\varepsilon:=1 / W_{-}$,
(2) $W_{+}=\frac{\varepsilon}{2 \delta^{2}} \quad \Rightarrow \quad \delta:=1 / \sqrt{2 W_{-} W_{+}}$,

Run the algorithm:
(1) Run phase estimation
(1) with operator $U(x)=\left(2 \Pi_{\mathcal{H}(x)}-I\right)\left(2 \Pi_{\mathcal{K}}-I\right)$,
(2) with initial state $\left|w_{0}\right\rangle$,

3 with precision δ,
call the outcome Φ_{δ}.
(2) Distinguish between
(1) $\mathbb{P}\left(\Phi_{\delta}=0\right) \leq \varepsilon / 2$ (output $f(x)=1$),
(2) $\mathbb{P}\left(\Phi_{\delta}=0\right) \geq \varepsilon$ (output $f(x)=0$),
with amplitude estimation with precision $\Theta(\sqrt{\varepsilon})$.
Total calls to $U(x): \mathcal{O}\left(\frac{1}{\delta \sqrt{\varepsilon}}\right)=\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$,

Closing thoughts

Closing thoughts

(1) The complexity can be improved from $\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$to $\mathcal{O}\left(\sqrt{W_{-} W_{+}}\right)$:

Closing thoughts

(1) The complexity can be improved from $\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$to $\mathcal{O}\left(\sqrt{W_{-} W_{+}}\right)$:
(1) Using a technique called span program renormalization.

Span program \mathcal{P}	
W_{+},	Span program renormalization
W_{-}.	Span program \mathcal{P}^{\prime} $W_{+}^{\prime}=\Theta\left(W_{+} W_{-}\right)$, $W_{-}^{\prime}=\Theta(1)$.

Closing thoughts

(1) The complexity can be improved from $\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$to $\mathcal{O}\left(\sqrt{W_{-} W_{+}}\right)$:
(1) Using a technique called span program renormalization.

| Span program \mathcal{P} |
| :---: | :---: |
| W_{+}, | | Span program |
| :---: |
| renormalization |
| W_{-} |\quad| Span program \mathcal{P}^{\prime} |
| :---: |
| $W_{+}^{\prime}=\Theta\left(W_{+} W_{-}\right)$, |
| $W_{-}^{\prime}=\Theta(1)$. |

(2) How does this technique look in the reflection program case?

Reflection program \mathcal{R}_{1}	Negation	Reflection program \mathcal{R}_{2}	Composition	Reflection program \mathcal{R}_{3}	Negation	Reflection program \mathcal{R}_{4}

Closing thoughts

(1) The complexity can be improved from $\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$to $\mathcal{O}\left(\sqrt{W_{-} W_{+}}\right)$:
(1) Using a technique called span program renormalization.

| Span program \mathcal{P} |
| :---: | :---: |
| W_{+}, | | Span program |
| :---: |
| renormalization |\quad| Span program \mathcal{P}^{\prime} |
| :---: |
| W_{-}. |

(2) How does this technique look in the reflection program case?

Reflection program \mathcal{R}_{1}	Negation	Reflection program \mathcal{R}_{2}	Composition	Reflection program \mathcal{R}_{3}	Negation	Reflection program \mathcal{R}_{4}

(2) Other relations seem to play a non-trivial role:

$$
\chi(y):=\mathbb{E}\left[\frac{1}{y-\sin ^{2}\left(\frac{\phi}{2}\right)}\right]=\left\langle w_{0}\right|\left(\Pi_{\mathcal{K}^{\perp}} \Pi_{\mathcal{H}(x)^{\perp}} \Pi_{\mathcal{K}^{\perp}}-(1-y) I\right)^{-1}\left|w_{0}\right\rangle .
$$

Closing thoughts

(1) The complexity can be improved from $\mathcal{O}\left(W_{-} \sqrt{W_{+}}\right)$to $\mathcal{O}\left(\sqrt{W_{-} W_{+}}\right)$:
(1) Using a technique called span program renormalization.

| Span program \mathcal{P} |
| :---: | :---: |
| W_{+}, | | Span program |
| :---: |
| renormalization |\quad| Span program \mathcal{P}^{\prime} |
| :---: |
| W_{-}. |

(2) How does this technique look in the reflection program case?

Reflection program \mathcal{R}_{1}	Negation	Reflection program \mathcal{R}_{2}	Composition	Reflection program \mathcal{R}_{3}	Negation	Reflection program \mathcal{R}_{4}

(2) Other relations seem to play a non-trivial role:

$$
\chi(y):=\mathbb{E}\left[\frac{1}{y-\sin ^{2}\left(\frac{\phi}{2}\right)}\right]=\left\langle w_{0}\right|\left(\Pi_{\mathcal{K}^{\perp}} \Pi_{\mathcal{H}(x)^{\perp}} \Pi_{\mathcal{K}^{\perp}}-(1-y) I\right)^{-1}\left|w_{0}\right\rangle
$$

Thanks for your attention! arjan@cwi.nl

Span programs - example

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $|\tau\rangle=1$.
(5) $A=\sum_{j=1}^{n}\langle j|$.

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
$\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$ evaluates f, as:

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
$\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$ evaluates f, as:

| Positive instance: | $x \neq 0^{n} \quad \Rightarrow$ |
| ---: | :--- | :--- |
| Negative instance: | $x=0^{n} \quad \Rightarrow$ |

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
$\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$ evaluates f, as:
Positive instance: $\mid x \neq 0^{n} \Rightarrow$ Let $x_{j}=1, A|j\rangle=1=|\tau\rangle$,
Negative instance: $x=0^{n} \Rightarrow$

Span programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
$\mathcal{P}=(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{V},|\tau\rangle, A)$ evaluates f, as:

Positive instance:	$x \neq 0^{n}$	\Rightarrow	Let $x_{j}=1, A\|j\rangle=1=\|\tau\rangle$,
Negative instance:	$x=0^{n}$	\Rightarrow	$A(\mathcal{H}(x))=\{0\} \not \supset\|\tau\rangle$.

Reflection programs - example

Positive instance

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(大) $A=\sum_{j=1}^{n}\langle j|$.

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(大) $A=\sum_{j=1}^{n}\langle j|$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| \boldsymbol{A}^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.

әכuetsu! әл!?!!sod

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(3) $\mathcal{V}=\mathbb{C}$.
(9) $|\tau\rangle=1$.
(3) $A=\sum_{j=1}^{n}\langle j|$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| A^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(c) $\mathcal{K}=\operatorname{Ker}(A)=\operatorname{Ker}\left(\left\langle w_{0}\right|\right)=$ Span $\left\{\left|w_{0}\right\rangle\right\}^{\perp}$.

әכuetsu! әл!?!!sod

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| A^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(9) $|\tau\rangle=1$.
(c) $\mathcal{K}=\operatorname{Ker}(A)=\operatorname{Ker}\left(\left\langle w_{0}\right|\right)=$
(6) $A=\sum_{j=1}^{n}\langle j|$. Span $\left\{\left|w_{0}\right\rangle\right\}^{\perp}$.
$\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$ evaluates f, as:

Positive instance

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| A^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(9) $|\tau\rangle=1$.
(c) $\mathcal{K}=\operatorname{Ker}(A)=\operatorname{Ker}\left(\left\langle w_{0}\right|\right)=$
(6) $A=\sum_{j=1}^{n}\langle j|$. Span $\left\{\left|w_{0}\right\rangle\right\}^{\perp}$.
$\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$ evaluates f, as:

Positive instance: $\mid x \neq 0^{n} \Rightarrow$

Negative instance: $x=0^{n} \Rightarrow$

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| A^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
(9) $\mathcal{K}=\operatorname{Ker}(A)=\operatorname{Ker}\left(\left\langle w_{0}\right|\right)=$
$\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$ evaluates f, as:
Positive instance: $\mid x \neq 0^{n} \Rightarrow$ Let $x_{j}=1$,

$$
\left|w_{0}\right\rangle=\underbrace{\sqrt{n}|j\rangle}_{\in \mathcal{H}(x)}+\underbrace{\frac{1}{\sqrt{n}} \sum_{k=1}^{n}|k\rangle-\sqrt{n}|j\rangle}_{\in \mathcal{K}} \in \mathcal{K}+\mathcal{H}(x)
$$

Negative instance: $x=0^{n} \Rightarrow$

Reflection programs - example

Search function: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(1) $\mathcal{H}=\mathbb{C}^{n}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(2) $\mathcal{H}(x)=\operatorname{Span}\left\{|j\rangle: x_{j}=1\right\}$.
(3) $\mathcal{V}=\mathbb{C}$.
(3) $\left|w_{0}\right\rangle=\frac{A^{+}|\tau\rangle}{\| A^{+}|\tau\rangle \|}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n}|j\rangle$.
(9) $|\tau\rangle=1$.
(6) $A=\sum_{j=1}^{n}\langle j|$.
(9) $\mathcal{K}=\operatorname{Ker}(A)=\operatorname{Ker}\left(\left\langle w_{0}\right|\right)=$
$\mathcal{R}=\left(\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K},\left|w_{0}\right\rangle\right)$ evaluates f, as:
Positive instance: $\mid x \neq 0^{n} \Rightarrow$ Let $x_{j}=1$,

$\left\|w_{0}\right\rangle=\underbrace{\sqrt{n}\|j\rangle}_{\in \mathcal{H}(x)}+\underbrace{\frac{1}{\sqrt{n}} \sum_{k=1}^{n}\|k\rangle-\sqrt{n}\|j\rangle}_{\in \mathcal{K}} \in \mathcal{K}+\mathcal{H}(x)$	
Negative instance:	$x=0^{n} \Rightarrow \mathcal{K}+\mathcal{H}(x)=\mathcal{K}=\operatorname{Span}\left\{\left\|w_{0}\right\rangle\right\}^{\perp} \not \supset\left\|w_{0}\right\rangle$.

