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Context

Problem: find the minimum of f : RY — R.

Can we speed up the gradient calculation step when d is large?
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Classical gradient estimation

o Easiest case: let f: R? — R be linear.
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f(x)=a+gix1+ -+ g4xd, Vf=]:
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@ So, at least d + 1 function evaluations required classically.
@ Can we do better with a quantum computer?
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Quantum Fourier transform

@ The n-qubit quantum Fourier transform is
defined as:
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Quantum Fourier transform
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@ The n-qubit quantum Fourier transform is
defined as:

2"—1 .
27r’:11k |k>
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V2" i L QFTan

QFTon @ |j)

@ The state QF Tan |j) can be visualized as
a helix making j revolutions.

@ The inverse QFT counts the number of

revolutions:
QFTL, : 1) s — zni:le 5 | QFTY,
on /50 e 2

@ Efficient implementations available.
@ Also works for non-integer revolutions.
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Quantum function evaluations

Let f : R — R.

Let G = {Xo, - ,X2n_1} CR.
We associate every state |j) to
the point x; in the domain of f.

@ We can evaluate f as follows:

Or : |j) = €09 |j)

@ This is called the phase oracle of
fonG.

One application of this phase

oracle is one quantum function
evaluation.
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@ Create a uniform superposition
over the grid.
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© Apply the inverse QFT.
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Quantum derivative estimation algorithm for linear
functions

Let f : R — R linear with |f'| < C.

@ Create a uniform superposition
over the grid.

@ Apply the phase oracle Of.
© Apply the inverse QFT.
@ Measure.

Generalizes to f : RY — R. )
(Jordan, 2004)

ol
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Modifications for non-linear functions

@ Let f : R — R, want to find ,
'(0). f
e Naive approach: {xp,...,xon_1} .

tight around the origin.
@ Problems:
e Rotations become very small.
e Function evaluations must be
very precise.
o Key idea: central difference
method to extend region of
approximate linearity.
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Central difference method

o Let f:RY - R and m > 0. We

define:
Flom)(x Z AP f(ex)
l=—m
@ such that:

fram(x) = VF(0):x+0 (||x|P™**)
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Central difference method

o Let f:RY - R and m > 0. We

define:
y I
fam)(X) Z AP f(ex) v
l=—m
@ such that:

F(2m)(x) = V£(0)-x+O (HXHZ’”H\.

/) 0> 1> 2> 3> 4> [|5>  |6> [7>

@ One can implement O;‘Ez ) using
m

O(m) queries to O.
(Gilyén, Arunachalam,
Wiebe, 2018)
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Case 1: Polynomial
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Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey
@ Let f: RY — R have a convergent Taylor

series:
Case 1: Polynomial
@ Let f: RY — R be a multivariate Z Z 9 f(O x&
polynomial of total degree k. k=0 aelat

@ Then F(k) is linear.

@ So gradient estimation takes O(k)
queries.
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Case 2: Gevrey

@ Let f: RY — R have a convergent Taylor

series:

@ Let f: RY — R be a multivariate

polynomial of total degree k.

@ Then F(k) is linear.

@ So gradient estimation takes O(k)
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Analog arithmetics (Gilyén et al., 2018)

Binary oracle
@ How to construct a phase oracle? |[Bs: |x)[0) — |x) |f(x))

Probability oracle
: |x) |0) — |x) (\/f(x 1) Phase oracle
Of : |x) — eff(®) |x)
+VI- ) |o>)
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Analog arithmetics (Gilyén et al., 2018)

@ How to construct a phase oracle?

Probability oracle

1x)10) = [x) (V/F(X) 1)
+VI- ) |o)

Binary oracle

Br - [x)10) — [x) [f(x))

Hamiltonian simulation

O(log(1/4)) queries
up to § precision

Phase oracle

Of : |x) — ) |x)
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e We need |f| <1

Probability oracle

1x)10) = [x) (V/F(X) 1)
+VI- ) |o)

Binary oracle
By < [x) |0) = [x) [f(x))

Hamiltonian simulation

O(log(1/4)) queries
up to § precision

Or

Phase oracle
2 [x) = e |x)

LCU

@ Analog arithmetical operations:

o Addition: consecutive applications of phase oracles.
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Analog arithmetics (Gilyén et al., 2018)

Binary oracle
@ How to construct a phase oracle? |[Bs: |x)[0) — |x) |f(x))

e We need |f| <1

Probability oracle Hamiltonian simulation
: |x) [0) — |x) (\/f(x |1) O(log(1/4)) queries Phase oracle
up to d precision Or : |x) = ef(®) |x
+ VI [0) i ) )

@ Analog arithmetical operations:
o Addition: consecutive applications of phase oracles.

Or Oy : |x) s eF)FE() |x)

e Multiplication: consecutive applications of probabilty oracles.

(Ur)1(Ug)2 - [x) [00) = /F(x)g(x) [x) [11) + [ L)
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Markov reward processes

@ Let S be a state space and sp € S
some initial state.

@ Let Ps_.o be the transition
probability function.

P:ls)0) = Is) S VPso IS)

s’eS
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@ Let Ps_.o be the transition
probability function.
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Markov reward processes

@ Let S be a state space and sp € S
some initial state.

@ Let Ps_.o be the transition
probability function.

P :|s)|0) —|s) Z V Ps_ssr |S")
s’eS
@ Let R(s) be the reward that you
obtain at state s.

R :|s) s eRE)|s)

o Let0<y<1.
@ Problem: evaluate the value

function:
V(so) =E | Y 7'R(S:)
t=0
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Markov reward processes

@ Let S be a state space and sp € S
some initial state.

@ Let Ps_.o be the transition
probability function.

P :|s)|0) —|s) Z V Ps_ssr |S")
s’eS
@ Let R(s) be the reward that you
obtain at state s.

R :|s) s eRE)|s)

o Let0<y<1.

@ Problem: evaluate the value
function:

V(So) =E

ZWtR(St)

@ Quantum value estimation
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Interpretation of the value function

@ Let’s consider the tree of

1
possible paths.
o Cutoff at: v
1 |R|max
T=0|——I —_—
(1—7 Og(s(l—'v) 7
~3

o ) - = DA
A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 14 /21



Interpretation of the value function

@ Let’s consider the tree of
possible paths.

o Cutoff at:

1 |R|max
T=0(-—"log | Imax_
(1—7 g(s(l—v)

DA

m] = = =
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Interpretation of the value function

@ Let’s consider the tree of
possible paths.

o Cutoff at:

ro{ctom ()

Okl

=] =) = = E DA™
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Interpretation of the value function

@ Let’s consider the tree of
possible paths.

o Cutoff at:

ro{ctom ()

Okl

= so—>a'Pa—>e' Peﬁb"'
R(S) R(s0) +vR(a) +~R(e) +
m] = = =
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Interpretation of the value function

@ Let’s consider the tree of
possible paths.

o Cutoff at:
1 |R|max ))
T=0 —I —_—
( g(a(l—w)

@ Value function approximately
equal to: '

Viw) = 3 FRE)-+O0) Q‘ o

):Pso—>a'Pa—>e'Pe—>b"'
R(s) = R(s0) +vR(a) +7*R(e) +
Sy = E D
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QVE step 2: Calculating the reward for a path

We have access to:

R |s) s &R |s)

Convert: &
$)[0) = VR(S) [s) [1) + |L) 3 (@)

e (o)

5 (o)

0 ()
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= (2
Convert: & ,
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Now multiply by c: le) e
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Markov decision processes

Let S be a set of states, A be a set of
actions, and sy the initial state.

Let ws— 5 be a policy.
M:s)|0) = s) > Vsoala)
acA
Let P; ,_,s be the transition function.

P :s)la)|0) = |s)|a) Z A/ Ps assr |5/>

s'es
Let R(s, a) be the reward function.

R:|s)|a) = €2 |s) |a)

Let 0 <y < 1.
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@ Let R(s, a) be the reward function.
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@ LetO <y <1
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is maximized.

@ Quantum policy optimization
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Quantum policy optimization — ideas

Classical idea: define some parameter space R?, and embed it into
the space of policies.

RN ()
Now, we define the following function f : RY — R:

F:0 0 V(x(0))

We wish to find the maximum of this function = gradient ascent!

Construction of a phase oracle of f can be done by modifying the
quantum value estimation algorithm.

@ How well does it work?
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@ Performance depends on the smoothness of the objective function.

£(0) = V(r(0))

e Smoothness of k can be freely chosen.

e Smoothness of V is in general of Gevrey type with o = 1.

e Smoothness of compositions of two Gevrey functions is in general
Gevrey with o = 1.

o What happens when we use polynomial approximations to V7

e What happens if we restrict to policies that are sufficiently
non-deterministic?

@ Even classical gradient ascent with quantum value evaluation as
subroutine provides speed-up!
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© Quantum gradient estimation:
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