Quantum gradient estimation and its application to quantum reinforcement learning

A. J. Cornelissen ${ }^{1,2}$
${ }^{1}$ Applied Mathematics
Delft University of Technology
${ }^{2}$ QuSoft
Centrum Wiskunde \& Informatica

June 5th, 2019

CWI

TUDelft

Context

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Context

Problem: find the minimum of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Can we speed up the gradient calculation step when d is large?

Classical gradient estimation

Classical gradient estimation

- Easiest case: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be linear.

$$
f(\mathbf{x})=a+g_{1} x_{1}+\cdots+g_{d} x_{d}, \quad \nabla f=\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

Classical gradient estimation

- Easiest case: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be linear.

$$
f(\mathbf{x})=a+g_{1} x_{1}+\cdots+g_{d} x_{d}, \quad \nabla f=\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- Every function evaluation yields a linear constraint on the unknowns.

Classical gradient estimation

- Easiest case: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be linear.

$$
f(\mathbf{x})=a+g_{1} x_{1}+\cdots+g_{d} x_{d}, \quad \nabla f=\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- Every function evaluation yields a linear constraint on the unknowns.

$$
\left[\begin{array}{c}
f\left(\mathbf{x}^{(1)}\right) \\
f\left(\mathbf{x}^{(2)}\right) \\
\vdots \\
f\left(\mathbf{x}^{(N)}\right)
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right]\left[\begin{array}{c}
a \\
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

Classical gradient estimation

- Easiest case: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be linear.

$$
f(\mathbf{x})=a+g_{1} x_{1}+\cdots+g_{d} x_{d}, \quad \nabla f=\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- Every function evaluation yields a linear constraint on the unknowns.

$$
\left[\begin{array}{c}
f\left(\mathbf{x}^{(1)}\right) \\
f\left(\mathbf{x}^{(2)}\right) \\
\vdots \\
f\left(\mathbf{x}^{(N)}\right)
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right]\left[\begin{array}{c}
a \\
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- So, at least $d+1$ function evaluations required classically.

Classical gradient estimation

- Easiest case: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be linear.

$$
f(\mathbf{x})=a+g_{1} x_{1}+\cdots+g_{d} x_{d}, \quad \nabla f=\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- Every function evaluation yields a linear constraint on the unknowns.

$$
\left[\begin{array}{c}
f\left(\mathbf{x}^{(1)}\right) \\
f\left(\mathbf{x}^{(2)}\right) \\
\vdots \\
f\left(\mathbf{x}^{(N)}\right)
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
1 & x_{1}^{(2)} & \cdots & x_{d}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right]\left[\begin{array}{c}
a \\
g_{1} \\
\vdots \\
g_{d}
\end{array}\right]
$$

- So, at least $d+1$ function evaluations required classically.
- Can we do better with a quantum computer?

Contents

Contents

(1) Quantum gradient estimation

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform
(3) Quantum gradient estimation algorithm

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform
(3) Quantum gradient estimation algorithm
(2) Quantum reinforcement learning

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform
(3) Quantum gradient estimation algorithm
(2) Quantum reinforcement learning
(1) Quantum value estimation

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform
(3) Quantum gradient estimation algorithm
(2) Quantum reinforcement learning
(1) Quantum value estimation
(2) Quantum policy optimization

Contents

(1) Quantum gradient estimation
(1) Visualization of quantum states
(2) Visualizaiton of the quantum Fourier transform
(3) Quantum gradient estimation algorithm
(2) Quantum reinforcement learning
(1) Quantum value estimation
(2) Quantum policy optimization
(3) Summary \& outlook

Visualization of quantum states

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2^{n}}$:

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in \mathbb{C}^{2} :

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in \mathbb{C}^{2} :

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2^{n}}$:

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

- Quantum gates move the arrows around.

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2^{n}}$:

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

- Quantum gates move the arrows around.
- The probability of getting outcome j is the length of the arrow in circle $|j\rangle$.

Visualization of quantum states

- An n-qubit state $|\psi\rangle$ is a unit vector in $\mathbb{C}^{2^{n}}$:

$$
|\psi\rangle=\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{2^{n}-1}
\end{array}\right]=\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle
$$

For all $j:\left|\alpha_{j}\right| \leq 1$.

- Quantum gates move the arrows around.
- The probability of getting outcome j is the length of the arrow in circle $|j\rangle$.

Quantum Fourier transform

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\text { QFT }_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

$\downarrow \mathrm{QFT}_{2^{n}}$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

$\downarrow \mathrm{QFT}_{2 n}$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

\downarrow QFT $_{2^{n}}$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\text { QFT }_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- The state $\mathrm{QFT}_{2^{n}}|j\rangle$ can be visualized as a helix making j revolutions.

\downarrow QFT $_{2^{n}}$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- The state $\mathrm{QFT}_{2^{n}}|j\rangle$ can be visualized as a helix making j revolutions.
- The inverse QFT counts the number of revolutions:

\downarrow QFT $_{2^{n}}$

$$
\mathrm{QFT}_{2^{n}}^{\dagger}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{-\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- The state $\mathrm{QFT}_{2^{n}}|j\rangle$ can be visualized as a helix making j revolutions.
- The inverse QFT counts the number of revolutions:

$$
\text { QFT }_{2^{n}}^{\dagger}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{-\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

\downarrow QFT $_{2^{n}}$
$\downarrow \mathrm{QFT}_{2^{n}}^{\dagger}$

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- The state $\mathrm{QFT}_{2^{n}}|j\rangle$ can be visualized as a helix making j revolutions.
- The inverse QFT counts the number of revolutions:

\downarrow QFT $_{2^{n}}$

$$
\text { QFT }_{2^{n}}^{\dagger}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{-\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

$$
\downarrow \mathrm{QFT}_{2^{n}}^{\dagger}
$$

- Efficient implementations available.

Quantum Fourier transform

- The n-qubit quantum Fourier transform is defined as:

$$
\mathrm{QFT}_{2^{n}}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- The state $\mathrm{QFT}_{2^{n}}|j\rangle$ can be visualized as a helix making j revolutions.
- The inverse QFT counts the number of revolutions:

\downarrow QFT $_{2^{n}}$

$$
\text { QFT }_{2^{n}}^{\dagger}:|j\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{-\frac{2 \pi i j k}{2^{n}}}|k\rangle
$$

- Efficient implementations available.
- Also works for non-integer revolutions.

Quantum function evaluations

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Let $G=\left\{x_{0}, \ldots, x_{2^{n}-1}\right\} \subseteq \mathbb{R}$.

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Let $G=\left\{x_{0}, \ldots, x_{2^{n}-1}\right\} \subseteq \mathbb{R}$.
- We associate every state $|j\rangle$ to the point x_{j} in the domain of f.

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Let $G=\left\{x_{0}, \ldots, x_{2^{n}-1}\right\} \subseteq \mathbb{R}$.
- We associate every state $|j\rangle$ to the point x_{j} in the domain of f.
- We can evaluate f as follows:

$$
O_{f}:|j\rangle \mapsto e^{i f\left(x_{j}\right)}|j\rangle
$$

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Let $G=\left\{x_{0}, \ldots, x_{2^{n}-1}\right\} \subseteq \mathbb{R}$.
- We associate every state $|j\rangle$ to the point x_{j} in the domain of f.
- We can evaluate f as follows:

$$
O_{f}:|j\rangle \mapsto e^{i f\left(x_{j}\right)}|j\rangle
$$

- This is called the phase oracle of f on G.

Quantum function evaluations

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Let $G=\left\{x_{0}, \ldots, x_{2^{n}-1}\right\} \subseteq \mathbb{R}$.
- We associate every state $|j\rangle$ to the point x_{j} in the domain of f.
- We can evaluate f as follows:

$$
O_{f}:|j\rangle \mapsto e^{i f\left(x_{j}\right)}|j\rangle
$$

- This is called the phase oracle of f on G.
- One application of this phase oracle is one quantum function evaluation.

Quantum derivative estimation algorithm for linear functions

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.
(3) Apply the inverse QFT.
(9) Measure.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.
(3) Apply the inverse QFT.
(9) Measure.

Quantum derivative estimation algorithm for linear functions

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ linear with $\left|f^{\prime}\right| \leq C$.

(1) Create a uniform superposition over the grid.
(2) Apply the phase oracle O_{f}.
(3) Apply the inverse QFT.
(9) Measure.

Generalizes to $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
(Jordan, 2004)

Modifications for non-linear functions

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.
- Problems:

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.
- Problems:
- Rotations become very small.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.
- Problems:

- Rotations become very small.
- Function evaluations must be very precise.

Modifications for non-linear functions

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$, want to find $f^{\prime}(0)$.
- Naive approach: $\left\{x_{0}, \ldots, x_{2^{n}-1}\right\}$ tight around the origin.
- Problems:

- Rotations become very small.
- Function evaluations must be very precise.
- Key idea: central difference method to extend region of approximate linearity.

Central difference method

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

Central difference method

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $m>0$. We define:

$$
\tilde{f}_{(2 m)}(\mathbf{x})=\sum_{\ell=-m}^{m} a_{\ell}^{(2 m)} f(\ell \mathbf{x})
$$

- such that:

$$
\widetilde{f}_{(2 m)}(\mathbf{x})=\nabla f(\mathbf{0}) \cdot \mathbf{x}+\mathcal{O}\left(\|\mathbf{x}\|^{2 m+1}\right)
$$

- One can implement $O_{\widetilde{f}_{(2 m)}}$ using $\widetilde{\mathcal{O}}(m)$ queries to O_{f}.
 (Gilyén, Arunachalam, Wiebe, 2018)

Smoothness conditions (Gilyén et al. 2018)

Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.

Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\widetilde{f}_{(k)}$ is linear.

Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\widetilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

Smoothness condition	Polynomial degree k			
Best known algorithm	$\widetilde{\mathcal{O}}(k)$			
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\widetilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

Smoothness condition	Polynomial degree k			
Best known algorithm	$\widetilde{\mathcal{O}}(k)$			
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Then $\widetilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.
- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k			
Best known algorithm	$\widetilde{\mathcal{O}}(k)$			
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{2}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$			
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(0)\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{2}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{2}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$			

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$		$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

Smoothness conditions (Gilyén et al. 2018)

Case 2: Gevrey

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ have a convergent Taylor series:

Case 1: Polynomial

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a multivariate polynomial of total degree k.
- Then $\tilde{f}_{(k)}$ is linear.
- So gradient estimation takes $\widetilde{\mathcal{O}}(k)$ queries.

$$
f(\mathbf{x})=\sum_{k=0}^{\infty} \sum_{\alpha \in[d]^{k}} \frac{\partial_{\alpha} f(\mathbf{0})}{k!} \mathbf{x}^{\alpha}
$$

- Let $\sigma \in\left[\frac{1}{2}, 1\right]$:

$$
\left|\partial_{\alpha} f(\mathbf{0})\right| \leq(k!)^{\sigma}
$$

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

Analog arithmetics (Gilyén et al., 2018)

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

> Binary oracle
> $B_{f}:|\mathbf{x}\rangle|0\rangle \mapsto|\mathbf{x}\rangle|f(\mathbf{x})\rangle$

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

> | Binary oracle |
| :---: |
| $B_{f}:\|\mathbf{x}\rangle\|0\rangle \mapsto\|\mathbf{x}\rangle\|f(\mathbf{x})\rangle$ |

> Phase oracle
> $O_{f}:|\mathbf{x}\rangle \mapsto e^{i f(x)}|\mathbf{x}\rangle$

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?

Binary oracle
$B_{f}:|\mathbf{x}\rangle|0\rangle \mapsto|\mathbf{x}\rangle|f(\mathbf{x})\rangle$

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?
- We need $\|f\|_{\infty} \leq 1$.

$$
\begin{gathered}
\text { Probability oracle } \\
\begin{aligned}
U_{f}:|\mathbf{x}\rangle|0\rangle & \mapsto|\mathbf{x}\rangle(\sqrt{f(\mathbf{x})}|1\rangle \\
& +\sqrt{1-f(\mathbf{x})}|0\rangle)
\end{aligned}
\end{gathered}
$$

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?
- We need $\|f\|_{\infty} \leq 1$.

- Analog arithmetical operations:

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?
- We need $\|f\|_{\infty} \leq 1$.

- Analog arithmetical operations:
- Addition: consecutive applications of phase oracles.

$$
O_{f} O_{g}:|\mathbf{x}\rangle \mapsto e^{i(f(\mathbf{x})+g(\mathbf{x}))}|\mathbf{x}\rangle
$$

Analog arithmetics (Gilyén et al., 2018)

- How to construct a phase oracle?
- We need $\|f\|_{\infty} \leq 1$.

- Analog arithmetical operations:
- Addition: consecutive applications of phase oracles.

$$
O_{f} O_{g}:|\mathbf{x}\rangle \mapsto e^{i(f(\mathbf{x})+g(\mathbf{x}))}|\mathbf{x}\rangle
$$

- Multiplication: consecutive applications of probabilty oracles.

$$
\left(U_{f}\right)_{1}\left(U_{g}\right)_{2}:|\mathbf{x}\rangle|00\rangle \mapsto \sqrt{f(\mathbf{x}) g(\mathbf{x})}|\mathbf{x}\rangle|11\rangle+|\perp\rangle
$$

Markov reward processes

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.
s_{0}

(b)

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

- Let $0<\gamma<1$.

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

- Let $0<\gamma<1$.
- Problem: evaluate the value function:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right]
$$

Markov reward processes

- Let S be a state space and $s_{0} \in S$ some initial state.
- Let $P_{s \rightarrow s^{\prime}}$ be the transition probability function.

$$
\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s)$ be the reward that you obtain at state s.

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

- Let $0<\gamma<1$.
- Problem: evaluate the value function:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right]
$$

- Quantum value estimation

Interpretation of the value function

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.

Interpretation of the value function

- Let's consider the tree of possible paths.
- Cutoff at:

$$
T=\Theta\left(\frac{1}{1-\gamma} \log \left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)}\right)\right)
$$

Interpretation of the value function

- Let's consider the tree of possible paths.
- Cutoff at:

$$
T=\Theta\left(\frac{1}{1-\gamma} \log \left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)}\right)\right)
$$

Interpretation of the value function

- Let's consider the tree of possible paths.
- Cutoff at:

$$
T=\Theta\left(\frac{1}{1-\gamma} \log \left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)}\right)\right)
$$

Interpretation of the value function

- Let's consider the tree of possible paths.
- Cutoff at:

$$
T=\Theta\left(\frac{1}{1-\gamma} \log \left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)}\right)\right)
$$

Interpretation of the value function

- Let's consider the tree of possible paths.
- Cutoff at:

$$
T=\Theta\left(\frac{1}{1-\gamma} \log \left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)}\right)\right)
$$

- Value function approximately equal to:

$$
V\left(s_{0}\right)=\sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})+\mathcal{O}(\varepsilon)
$$

QVE step 1: Setting up the tree

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$
$\left|s_{0}\right\rangle$
$|0\rangle$
$|0\rangle$
$|0\rangle$
\vdots
$|0\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$
$\left|s_{0}\right\rangle$
$|0\rangle$
$|0\rangle$
$|0\rangle$
\vdots
$|0\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$
$\left|s_{0}\right\rangle$
|0〉
|0>
$|0\rangle$
\vdots
$|0\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$
\mathcal{P}

$$
\sum_{s_{1} \in S} \sqrt{P_{s_{0} \rightarrow s_{1}}}\left|s_{0}\right\rangle\left|s_{1}\right\rangle
$$

|0〉
|0)
|0)

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$
\mathcal{P}

$$
\sum_{s_{1} \in S} \sqrt{P_{s_{0} \rightarrow s_{1}}}\left|s_{0}\right\rangle\left|s_{1}\right\rangle
$$

|0〉
|0)
|0〉

QVE step 1: Setting up the tree

$$
\text { We have access to: } \mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

\mathcal{P}

$$
\sum_{s_{1} \in S} \sqrt{P_{s_{0} \rightarrow s_{1}}}\left|s_{0}\right\rangle\left|s_{1}\right\rangle
$$

\mathcal{P}

$$
\begin{gathered}
|0\rangle \\
|0\rangle \\
\vdots \\
|0\rangle
\end{gathered}
$$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

|0〉
|0)

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

QVE step 1: Setting up the tree

$$
\text { We have access to: } \mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

QVE step 1: Setting up the tree

$$
\text { We have access to: } \mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

QVE step 1: Setting up the tree

$$
\text { We have access to: } \mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

$$
\mathcal{P}
$$

$$
\mathcal{P}
$$

$$
\sum_{\mathbf{s} \in S^{3}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle
$$

$$
\mathcal{P}
$$

$$
|0\rangle
$$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

QVE step 1: Setting up the tree

We have access to: $\mathcal{P}:|s\rangle|0\rangle \mapsto|s\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle$

QVE step 2: Calculating the reward for a path

QVE step 2: Calculating the reward for a path

QVE step 2: Calculating the reward for a path

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

\mathcal{R}
\mathcal{R}^{γ}

$$
\mathcal{R}^{\gamma^{3}}
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

$\mathcal{R}^{\gamma^{T-1}}$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle \quad \mathcal{R}^{\gamma^{3}}
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle \quad \mathcal{R}^{\gamma^{T-1}}
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle \quad \mathcal{R}^{\gamma^{T-1}}
$$

$$
|\mathbf{s}\rangle \mapsto e^{i R(\mathbf{s})}|\mathbf{s}\rangle \quad \text { with } \widetilde{\mathcal{O}}(T) \text { queries to } \mathcal{R}
$$

QVE step 2: Calculating the reward for a path

We have access to:

$$
\mathcal{R}:|s\rangle \mapsto e^{i R(s)}|s\rangle
$$

Convert:

$$
|s\rangle|0\rangle \mapsto \sqrt{R(s)}|s\rangle|1\rangle+|\perp\rangle
$$

Now multiply by c :

$$
|s\rangle|00\rangle \mapsto \sqrt{c R(s)}|s\rangle|11\rangle+|\perp\rangle
$$

$$
\begin{gathered}
\mathcal{R} \\
\mathcal{R}^{\gamma} \\
\mathcal{R}^{\gamma^{2}} \\
\mathcal{R}^{\gamma^{3}} \\
\vdots \\
\mathcal{R}^{\gamma^{T-1}}
\end{gathered}
$$

$$
|\mathbf{s}\rangle \mapsto e^{i R(\mathbf{s})}|\mathbf{s}\rangle \quad \text { with } \widetilde{\mathcal{O}}(T) \text { queries to } \mathcal{R}
$$

Convert back:

$$
\mathcal{R}^{c}:|s\rangle \mapsto e^{i c R(s)}|s\rangle
$$

$$
\overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle \quad \text { with } \widetilde{\mathcal{O}}(T) \text { queries to } \mathcal{R}
$$

Quantum value estimation algorithm

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

- Composing $\overline{\mathcal{P}}$ and $\overline{\mathcal{R}}$ yields:

$$
\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)}|0\rangle
$$

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

- Composing $\overline{\mathcal{P}}$ and $\overline{\mathcal{R}}$ yields:

$$
\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)}|0\rangle \stackrel{\overline{\mathcal{P}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle|0\rangle
$$

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

- Composing $\overline{\mathcal{P}}$ and $\overline{\mathcal{R}}$ yields:

$$
\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)}|0\rangle \stackrel{\overline{\mathcal{P}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle|0\rangle \stackrel{\overline{\mathcal{R}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s}) R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

- Composing $\overline{\mathcal{P}}$ and $\overline{\mathcal{R}}$ yields:

$$
\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)}|0\rangle \stackrel{\overline{\mathcal{P}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle|0\rangle \stackrel{\overline{\mathcal{R}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s}) R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- One can obtain the value function with amplitude estimation up to precision ε with

$$
\widetilde{\mathcal{O}}\left(\frac{T|R|_{\max }}{\varepsilon(1-\gamma)}\right)=\widetilde{\mathcal{O}}\left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)^{2}}\right)
$$

queries to \mathcal{P} and \mathcal{R}, quadratically faster than classical algorithms.

Quantum value estimation algorithm

- We have constructed the following operations with $\widetilde{\mathcal{O}}(T)$ queries to \mathcal{P} and \mathcal{R} :

$$
\overline{\mathcal{P}}:\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)} \mapsto \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle \quad \text { and } \quad \overline{\mathcal{R}}:|\mathbf{s}\rangle|0\rangle \mapsto \sqrt{R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- We want to calculate:

$$
V\left(s_{0}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}\right)\right] \approx \sum_{\mathbf{s} \in S^{T-1}} \mathbb{P}(\mathbf{s}) R(\mathbf{s})
$$

- Composing $\overline{\mathcal{P}}$ and $\overline{\mathcal{R}}$ yields:

$$
\left|s_{0}\right\rangle|0\rangle^{\otimes(T-1)}|0\rangle \stackrel{\overline{\mathcal{P}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s})}|\mathbf{s}\rangle|0\rangle \stackrel{\overline{\mathcal{R}}}{\mapsto} \sum_{\mathbf{s} \in S^{T-1}} \sqrt{\mathbb{P}(\mathbf{s}) R(\mathbf{s})}|\mathbf{s}\rangle|1\rangle+|\perp\rangle
$$

- One can obtain the value function with amplitude estimation up to precision ε with

$$
\widetilde{\mathcal{O}}\left(\frac{T|R|_{\max }}{\varepsilon(1-\gamma)}\right)=\widetilde{\mathcal{O}}\left(\frac{|R|_{\max }}{\varepsilon(1-\gamma)^{2}}\right)
$$

queries to \mathcal{P} and \mathcal{R}, quadratically faster than classical algorithms.

- This is essentially optimal for $\varepsilon \downarrow 0,|R|_{\max } \rightarrow \infty, \gamma \uparrow 1$.

Markov decision processes

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s, a)$ be the reward function.

$$
\mathcal{R}:|s\rangle|a\rangle \mapsto e^{i R(s, a)}|s\rangle|a\rangle
$$

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s, a)$ be the reward function.

$$
\mathcal{R}:|s\rangle|a\rangle \mapsto e^{i R(s, a)}|s\rangle|a\rangle
$$

- Let $0<\gamma<1$.

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s, a)$ be the reward function.

$$
\mathcal{R}:|s\rangle|a\rangle \mapsto e^{i R(s, a)}|s\rangle|a\rangle
$$

- Let $0<\gamma<1$.
- Goal: find the policy π such that:

$$
V(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}, A_{t}\right)\right]
$$

is maximized.

Markov decision processes

- Let S be a set of states, A be a set of actions, and s_{0} the initial state.
- Let $\pi_{s \rightarrow a}$ be a policy.

$$
\Pi:|s\rangle|0\rangle \mapsto|s\rangle \sum_{a \in A} \sqrt{\pi_{s \rightarrow a}}|a\rangle
$$

- Let $P_{s, a \rightarrow s^{\prime}}$ be the transition function.

$$
\mathcal{P}:|s\rangle|a\rangle|0\rangle \mapsto|s\rangle|a\rangle \sum_{s^{\prime} \in S} \sqrt{P_{s, a \rightarrow s^{\prime}}}\left|s^{\prime}\right\rangle
$$

- Let $R(s, a)$ be the reward function.

$$
\mathcal{R}:|s\rangle|a\rangle \mapsto e^{i R(s, a)}|s\rangle|a\rangle
$$

- Let $0<\gamma<1$.
- Goal: find the policy π such that:

$$
V(\pi)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(S_{t}, A_{t}\right)\right]
$$

is maximized.

- Quantum policy optimization

Quantum policy optimization - ideas

Quantum policy optimization - ideas

- Classical idea: define some parameter space \mathbb{R}^{d}, and embed it into the space of policies.

$$
\kappa: \theta \mapsto \pi^{(\theta)}
$$

Quantum policy optimization - ideas

- Classical idea: define some parameter space \mathbb{R}^{d}, and embed it into the space of policies.

$$
\kappa: \theta \mapsto \pi^{(\theta)}
$$

- Now, we define the following function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
f: \theta \mapsto V(\kappa(\theta))
$$

Quantum policy optimization - ideas

- Classical idea: define some parameter space \mathbb{R}^{d}, and embed it into the space of policies.

$$
\kappa: \theta \mapsto \pi^{(\theta)}
$$

- Now, we define the following function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
f: \theta \mapsto V(\kappa(\theta))
$$

- We wish to find the maximum of this function \Rightarrow gradient ascent!

Quantum policy optimization - ideas

- Classical idea: define some parameter space \mathbb{R}^{d}, and embed it into the space of policies.

$$
\kappa: \theta \mapsto \pi^{(\theta)}
$$

- Now, we define the following function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
f: \theta \mapsto V(\kappa(\theta))
$$

- We wish to find the maximum of this function \Rightarrow gradient ascent!
- Construction of a phase oracle of f can be done by modifying the quantum value estimation algorithm.

Quantum policy optimization - ideas

- Classical idea: define some parameter space \mathbb{R}^{d}, and embed it into the space of policies.

$$
\kappa: \theta \mapsto \pi^{(\theta)}
$$

- Now, we define the following function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

$$
f: \theta \mapsto V(\kappa(\theta))
$$

- We wish to find the maximum of this function \Rightarrow gradient ascent!
- Construction of a phase oracle of f can be done by modifying the quantum value estimation algorithm.
- How well does it work?

Performance analysis (work in progress)

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.
- Smoothness of V is in general of Gevrey type with $\sigma=1$.

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.
- Smoothness of V is in general of Gevrey type with $\sigma=1$.
- Smoothness of compositions of two Gevrey functions is in general Gevrey with $\sigma=1$.

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.
- Smoothness of V is in general of Gevrey type with $\sigma=1$.
- Smoothness of compositions of two Gevrey functions is in general Gevrey with $\sigma=1$.
- What happens when we use polynomial approximations to V ?

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.
- Smoothness of V is in general of Gevrey type with $\sigma=1$.
- Smoothness of compositions of two Gevrey functions is in general Gevrey with $\sigma=1$.
- What happens when we use polynomial approximations to V ?
- What happens if we restrict to policies that are sufficiently non-deterministic?

Performance analysis (work in progress)

- Performance depends on the smoothness of the objective function.

$$
f(\theta)=V(\kappa(\theta))
$$

- Smoothness of κ can be freely chosen.
- Smoothness of V is in general of Gevrey type with $\sigma=1$.
- Smoothness of compositions of two Gevrey functions is in general Gevrey with $\sigma=1$.
- What happens when we use polynomial approximations to V ?
- What happens if we restrict to policies that are sufficiently non-deterministic?
- Even classical gradient ascent with quantum value evaluation as subroutine provides speed-up!

Summary \& outlook

Summary \& outlook

(1) Quantum gradient estimation:

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{2}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:
- Optimal algorithm with analog computation.

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:
- Optimal algorithm with analog computation.
(3) Quantum policy optimization:

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:
- Optimal algorithm with analog computation.
(3) Quantum policy optimization:
- Speed-up using QVE.

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:
- Optimal algorithm with analog computation.
(3) Quantum policy optimization:
- Speed-up using QVE.
- Open problem: approximating V for more smoothness?

Summary \& outlook

(1) Quantum gradient estimation:

Smoothness condition	Polynomial degree k	$\sigma \in\left[0, \frac{1}{3}\right)$	$\sigma=\frac{1}{2}$	$\sigma \in\left(\frac{1}{2}, 1\right]$
Best known algorithm	$\widetilde{\mathcal{O}}(k)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\frac{1}{2}}\right)$	$\widetilde{\mathcal{O}}\left(d^{\sigma}\right)$
Best known lower bound	$\Omega(1)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$	$\Omega\left(d^{\frac{1}{2}}\right)$

From ℓ^{∞} to ℓ^{p} approximations: multiply upper and lower bounds by $\Theta\left(d^{\frac{1}{p}}\right)$.

- Speed-up for polynomials and $\sigma<1$.
- Open problem: Close the gap for $\sigma=1$.
(2) Quantum value estimation:
- Optimal algorithm with analog computation.
(3) Quantum policy optimization:
- Speed-up using QVE.
- Open problem: approximating V for more smoothness?

Thanks for your attention! arjan@cwi.nl

