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Context

Problem: find the minimum of f : Rd → R.

Can we speed up the gradient calculation step when d is large?
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Classical gradient estimation

Easiest case: let f : Rd → R be linear.

f (x) = a + g1x1 + · · ·+ gdxd , ∇f =

g1
...
gd


Every function evaluation yields a linear constraint on the unknowns.

f (x(1))

f (x(2))
...

f (x(N))

 =


1 x

(1)
1 · · · x

(1)
d

1 x
(2)
1 · · · x

(2)
d
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. . .
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1 x
(N)
1 · · · x

(N)
d



a
g1
...
gd


So, at least d + 1 function evaluations required classically.

Can we do better with a quantum computer?
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Visualization of quantum states

An n-qubit state |ψ〉 is a unit vector

in C2n :

|ψ〉 =

 α0

...
α2n−1

 =

2n−1∑
j=0

αj |j〉

For all j : |αj | ≤ 1.

Quantum gates move the arrows around.

The probability of getting outcome j is
the length of the arrow in circle |j〉.
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Quantum Fourier transform

The n-qubit quantum Fourier transform is
defined as:

QFT2n : |j〉 7→
1
√

2n

2n−1∑
k=0

e
2πijk

2n |k〉

The state QFT2n |j〉 can be visualized as
a helix making j revolutions.

The inverse QFT counts the number of
revolutions:

QFT†2n : |j〉 7→
1
√

2n

2n−1∑
k=0

e−
2πijk

2n |k〉

Efficient implementations available.

Also works for non-integer revolutions.

↓ QFT2n

↓ QFT†2n
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Quantum function evaluations

Let f : R→ R.

Let G = {x0, . . . , x2n−1} ⊆ R.

We associate every state |j〉 to
the point xj in the domain of f .

We can evaluate f as follows:

Of : |j〉 7→ e if (xj ) |j〉

This is called the phase oracle of
f on G .

One application of this phase
oracle is one quantum function
evaluation.
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Quantum derivative estimation algorithm for linear
functions

Let f : R→ R linear with |f ′| ≤ C .

1 Create a uniform superposition
over the grid.

2 Apply the phase oracle Of .

3 Apply the inverse QFT.

4 Measure.

Generalizes to f : Rd → R.
(Jordan, 2004)
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Modifications for non-linear functions

Let f : R→ R, want to find
f ′(0).

Naive approach: {x0, . . . , x2n−1}
tight around the origin.

Problems:

Rotations become very small.
Function evaluations must be
very precise.

Key idea: use a central
difference method to extend
region of approximate linearity.
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Central difference method

Let f : Rd → R and m > 0. We
define:

f̃(2m)(x) =
m∑

`=−m
a

(2m)
` f (`x)

such that:

f̃(2m)(x) = ∇f (0)·x+O
(
‖x‖2m+1

)

One can implement O
f̃(2m)

using

Õ(m) queries to Of .
(Gilyén, Arunachalam,
Wiebe, 2018)
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Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

Let f : Rd → R be a multivariate
polynomial of total degree k.

Then f̃(k) is linear.

So gradient estimation takes Õ(k)
queries.

Case 2: Gevrey

Let f : Rd → R have a convergent Taylor
series:

f (x) =
∞∑
k=0

∑
α∈[d ]k

∂αf (0)

k!
xα

Let σ ∈ [ 1
2
, 1]:

|∂αf (0)| ≤ (k!)σ

Smoothness Polynomial

Gevrey

condition degree k

σ ∈ [0, 1
2

) σ = 1
2

σ ∈ ( 1
2
, 1]

Best known algorithm Õ (k)

Õ(d
1
2 ) Õ(d

1
2 ) Õ(dσ)

Best known lower bound Ω(1)

Ω(d
1
2 ) Ω(d

1
2 ) Ω(d

1
2 )

From `∞ to `p approximations: multiply upper and lower bounds by Θ(d
1
p ).
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2 ) Õ(dσ)

Best known lower bound Ω(1)

Ω(d
1
2 ) Ω(d

1
2 ) Ω(d

1
2 )

From `∞ to `p approximations: multiply upper and lower bounds by Θ(d
1
p ).

A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 11 / 21



Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

Let f : Rd → R be a multivariate
polynomial of total degree k.

Then f̃(k) is linear.

So gradient estimation takes Õ(k)
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2 ) Õ(dσ)

Best known lower bound Ω(1)

Ω(d
1
2 ) Ω(d

1
2 ) Ω(d

1
2 )

From `∞ to `p approximations: multiply upper and lower bounds by Θ(d
1
p ).

A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 11 / 21



Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

Let f : Rd → R be a multivariate
polynomial of total degree k.

Then f̃(k) is linear.

So gradient estimation takes Õ(k)
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Õ(d
1
2 ) Õ(d

1
2 ) Õ(dσ)

Best known lower bound Ω(1)

Ω(d
1
2 ) Ω(d

1
2 ) Ω(d

1
2 )

From `∞ to `p approximations: multiply upper and lower bounds by Θ(d
1
p ).

A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 11 / 21



Smoothness conditions (Gilyén et al. 2018)

Case 1: Polynomial

Let f : Rd → R be a multivariate
polynomial of total degree k.

Then f̃(k) is linear.

So gradient estimation takes Õ(k)
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Analog arithmetics (Gilyén et al., 2018)

How to construct a phase oracle?

We need ‖f ‖∞ ≤ 1.

Binary oracle
Bf : |x〉 |0〉 7→ |x〉 |f (x)〉

Phase oracle
Of : |x〉 7→ e if (x) |x〉

Probability oracle

Uf : |x〉 |0〉 7→ |x〉
(√

f (x) |1〉

+
√

1− f (x) |0〉
)

Phase
kickback

1
query

Hamiltonian simulation

LCU

O(log(1/δ)) queries
up to δ precision

Analog arithmetical operations:
Addition: consecutive applications of phase oracles.

OfOg : |x〉 7→ e i(f (x)+g(x)) |x〉

Multiplication: consecutive applications of probabilty oracles.

(Uf )1(Ug )2 : |x〉 |00〉 7→
√
f (x)g(x) |x〉 |11〉+ |⊥〉
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Markov reward processes

Let S be a state space and s0 ∈ S
some initial state.

Let Ps→s′ be the transition
probability function.

P : |s〉 |0〉 7→ |s〉
∑
s′∈S

√
Ps→s′ |s ′〉

Let R(s) be the reward that you
obtain at state s.

R : |s〉 7→ e iR(s) |s〉

Let 0 < γ < 1.

Problem: evaluate the value
function:

V (s0) = E

[ ∞∑
t=0

γtR(St)

]
Quantum value estimation

s0

a b

c

d

e

f

Ps0→a
Ps0→b

Pb→s0

Pa→e Pe→b Pb→c

Pc→e

Pe→d

Pd→e

Pd→f

Pf→e

R(s0)

R(a) R(b)

R(c)R(d) R(e)

R(f )
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Markov reward processes

Let S be a state space and s0 ∈ S
some initial state.

Let Ps→s′ be the transition
probability function.

P : |s〉 |0〉 7→ |s〉
∑
s′∈S

√
Ps→s′ |s ′〉

Let R(s) be the reward that you
obtain at state s.

R : |s〉 7→ e iR(s) |s〉

Let 0 < γ < 1.

Problem: evaluate the value
function:
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Interpretation of the value function

Let’s consider the tree of
possible paths.

Cutoff at:

T = Θ

(
1

1− γ
log

(
|R|max

ε(1− γ)

))

Value function approximately
equal to:

V (s0) =
∑

s∈ST−1

P(s)R(s) +O(ε)
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P(s) = Ps0→a · Pa→e · Pe→b · · ·
R(s) = R(s0) + γR(a) + γ2R(e) + · · ·
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QVE step 1: Setting up the tree

We have access to: P : |s〉 |0〉 7→ |s〉
∑
s′∈S

√
Ps→s′

∣∣s ′〉
|s0〉

|0〉

|0〉

|0〉
...

|0〉

P
∑
s1∈S

√
Ps0→s1 |s0〉 |s1〉∑

s1,s2∈S

√
Ps0→s1Ps1→s2 |s0〉 |s1〉 |s2〉
∑
s∈S2

√
P(s) |s〉∑

s∈S3

√
P(s) |s〉∑

s∈ST−1

√
P(s) |s〉

P

P

s0

a b

e c s0

d b e a b

...

· · ·

P : |s0〉 |0〉⊗(T−1) 7→
∑

s∈ST−1

√
P(s) |s〉 with T − 1 queries to P
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A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 16 / 21



QVE step 2: Calculating the reward for a path

We have access to:

R : |s〉 7→ e iR(s) |s〉

Convert:

|s〉 |0〉 7→
√

R(s) |s〉 |1〉+ |⊥〉

Now multiply by c :

|s〉 |00〉 7→
√
cR(s) |s〉 |11〉+ |⊥〉

Convert back:

Rc : |s〉 7→ e icR(s) |s〉

s0

a

e

b

...

x

e iR(s0)

|s0〉

e iγR(a)

|a〉

e iγ
2R(e)

|e〉

e iγ
3R(b)

|b〉
...

e iγ
T−1R(x)

|x〉

e iR(s)

R

Rγ

Rγ2

Rγ3

...

RγT−1

|s〉 7→ e iR(s) |s〉 with Õ(T ) queries to R
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A.J. Cornelissen (CWI / TU Delft) QGE and its application to QRL June 5th, 2019 16 / 21



Quantum value estimation algorithm

We have constructed the following operations with Õ(T ) queries to P and R:

P : |s0〉 |0〉⊗(T−1) 7→
∑

s∈ST−1

√
P(s) |s〉 and R : |s〉 |0〉 7→

√
R(s) |s〉 |1〉+ |⊥〉

We want to calculate:

V (s0) = E

[ ∞∑
t=0

γtR(St)

]
≈

∑
s∈ST−1

P(s)R(s)

Composing P and R yields:

|s0〉 |0〉⊗(T−1) |0〉

P7→
∑

s∈ST−1

√
P(s) |s〉 |0〉 R7→

∑
s∈ST−1

√
P(s)R(s) |s〉 |1〉+ |⊥〉

One can obtain the value function with amplitude estimation up to precision ε with

Õ
(
T |R|max

ε(1− γ)

)
= Õ

(
|R|max

ε(1− γ)2

)
queries to P and R, quadratically faster than classical algorithms.

This is essentially optimal for ε ↓ 0, |R|max →∞, γ ↑ 1.
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Õ
(
T |R|max

ε(1− γ)

)
= Õ
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Markov decision processes

Let S be a set of states, A be a set of
actions, and s0 the initial state.

Let πs→a be a policy.

Π : |s〉 |0〉 7→ |s〉
∑
a∈A

√
πs→a |a〉

Let Ps,a→s′ be the transition function.

P : |s〉 |a〉 |0〉 7→ |s〉 |a〉
∑
s′∈S

√
Ps,a→s′

∣∣s′〉
Let R(s, a) be the reward function.

R : |s〉 |a〉 7→ e iR(s,a) |s〉 |a〉

Let 0 < γ < 1.

Goal: find the policy π such that:

V (π) = Eπ

[ ∞∑
t=0

γtR(St ,At)

]
is maximized.

Quantum policy optimization

s0

s1

s2

s3

a0 a1

a2 a3
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Quantum policy optimization – ideas

Classical idea: define some parameter space Rd , and embed it into
the space of policies.

κ : θ 7→ π(θ)

Now, we define the following function f : Rd → R:

f : θ 7→ V (κ(θ))

We wish to find the maximum of this function ⇒ gradient ascent!

Construction of a phase oracle of f can be done by modifying the
quantum value estimation algorithm.

How well does it work?
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Performance analysis (work in progress)

Performance depends on the smoothness of the objective function.

f (θ) = V (κ(θ))

Smoothness of κ can be freely chosen.
Smoothness of V is in general of Gevrey type with σ = 1.
Smoothness of compositions of two Gevrey functions is in general
Gevrey with σ = 1.
What happens when we use polynomial approximations to V ?
What happens if we restrict to policies that are sufficiently
non-deterministic?

Even classical gradient ascent with quantum value evaluation as
subroutine provides speed-up!
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Summary & outlook

1 Quantum gradient estimation:
Smoothness Polynomial Gevrey

condition degree k σ ∈ [0, 1
2

) σ = 1
2

σ ∈ ( 1
2
, 1]

Best known algorithm Õ (k) Õ(d
1
2 ) Õ(d

1
2 ) Õ(dσ)

Best known lower bound Ω(1) Ω(d
1
2 ) Ω(d

1
2 ) Ω(d

1
2 )

From `∞ to `p approximations: multiply upper and lower bounds by Θ(d
1
p ).

Speed-up for polynomials and σ < 1.
Open problem: Close the gap for σ = 1.

2 Quantum value estimation:
Optimal algorithm with analog computation.

3 Quantum policy optimization:
Speed-up using QVE.
Open problem: approximating V for more smoothness?

Thanks for your attention!
arjan@cwi.nl
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1
2 ) Õ(dσ)
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