Quantum algorithms through composition of graphs

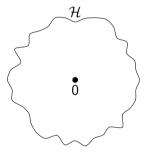
Arjan Cornelissen¹

¹Simons Institute, University of California, Berkeley, California

October 8th, 2025

Quantum algorithm:

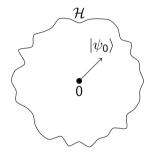
• State space: Hilbert space \mathcal{H} .



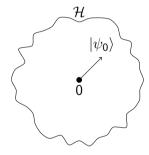
Quantum algorithm:

• State space: Hilbert space \mathcal{H} .

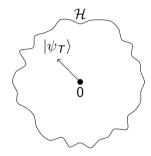
2 Initial state: $|\psi_0\rangle \in \mathcal{H}$, $||\psi_0\rangle|| = 1$.



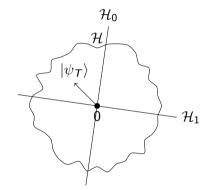
- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **Quantum operations:** unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.



- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **3** Quantum operations: unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.



- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **Quantum operations:** unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.
- Quantum measurement: $\{o_1, \dots o_n\}$ $\mathcal{H}_{o_1}, \dots, \mathcal{H}_{o_n} \subseteq \mathcal{H} : \bigoplus_o \mathcal{H}_o = \mathcal{H}.$ $\mathbb{P}[\text{output } o] = \|\Pi_{\mathcal{H}_o} U_T \cdots U_1 |\psi_0\rangle\|^2.$



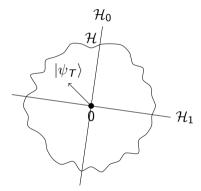
 $\mathbb{P}[\text{output } o] = \\ \|\Pi_{\mathcal{H}_o} U_T \cdots U_5 U_4 U_3 U_2 U_1 |\psi_0\rangle\|^2.$

Quantum algorithm:

- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **3** Quantum operations: unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.
- Quantum measurement: $\{o_1, \dots o_n\}$ $\mathcal{H}_{o_1}, \dots, \mathcal{H}_{o_n} \subseteq \mathcal{H} : \bigoplus_o \mathcal{H}_o = \mathcal{H}.$ $\mathbb{P}[\text{output } o] = \|\Pi_{\mathcal{H}_o} U_T \cdots U_1 |\psi_0\rangle\|^2.$

Quantum query algorithm: $f: \mathcal{D} \to \Sigma$.

- **1** Input oracle: $\forall x \in \mathcal{D}$, unitary $O_x \in \mathcal{L}(\mathcal{H})$.
- ② Success probability: $\forall x \in \mathcal{D}, \mathbb{P}[\text{output } f(x)] \geq 2/3.$



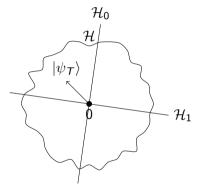
$$\begin{split} \mathbb{P}[\mathsf{output}\ \mathit{o}] = \\ \|\Pi_{\mathcal{H}_o} U_{\mathcal{T}} \cdots U_{\mathcal{5}} U_{\mathcal{4}} U_{\mathcal{3}} U_{\mathcal{2}} U_{\mathcal{1}} \left| \psi_0 \right\rangle \|^2. \end{split}$$

Quantum algorithm:

- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $|||\psi_0\rangle|| = 1$.
- **3** Quantum operations: unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.
- Quantum measurement: $\{o_1, \dots o_n\}$ $\mathcal{H}_{o_1}, \dots, \mathcal{H}_{o_n} \subseteq \mathcal{H} : \bigoplus_o \mathcal{H}_o = \mathcal{H}.$ $\mathbb{P}[\text{output } o] = \|\Pi_{\mathcal{H}_o} U_{\mathcal{T}} \cdots U_1 |\psi_0\rangle\|^2.$

Quantum query algorithm: $f: \mathcal{D} \to \Sigma$.

- **1** Input oracle: $\forall x \in \mathcal{D}$, unitary $O_x \in \mathcal{L}(\mathcal{H})$.
- ② Success probability: $\forall x \in \mathcal{D}, \mathbb{P}[\text{output } f(x)] \geq 2/3.$



$$\begin{split} \mathbb{P}[\mathsf{output}\ \mathit{o}] = \\ \|\Pi_{\mathcal{H}_{\mathit{o}}} U_{\mathit{T}} \cdots U_{\mathit{5}} \mathit{O}_{\mathsf{x}} U_{\mathit{3}} \mathit{O}_{\mathsf{x}} U_{\mathit{1}} \left| \psi_{\mathsf{0}} \right\rangle \|^{2}. \end{split}$$

Quantum algorithm:

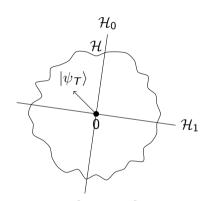
- State space: Hilbert space \mathcal{H} .
- ② Initial state: $|\psi_0\rangle \in \mathcal{H}$, $||\psi_0\rangle|| = 1$.
- **3** Quantum operations: unitaries $U_1, \ldots, U_T \in \mathcal{L}(\mathcal{H})$.
- Quantum measurement: $\{o_1, \dots o_n\}$ $\mathcal{H}_{o_1}, \dots, \mathcal{H}_{o_n} \subseteq \mathcal{H} : \bigoplus_o \mathcal{H}_o = \mathcal{H}.$ $\mathbb{P}[\text{output } o] = \|\Pi_{\mathcal{H}_o} U_{\mathcal{T}} \cdots U_1 |\psi_0\rangle\|^2.$

Quantum query algorithm: $f: \mathcal{D} \to \Sigma$.

- **1** Input oracle: $\forall x \in \mathcal{D}$, unitary $O_x \in \mathcal{L}(\mathcal{H})$.
- Success probability: $\forall x \in \mathcal{D}, \mathbb{P}[\text{output } f(x)] \geq 2/3.$

Quantum query complexity: $Q(f; O_x)$:

Minimum number of oracle calls.



$$\mathbb{P}[\text{output } o] = \|\Pi_{\mathcal{H}_o} U_{\mathcal{T}} \cdots U_5 O_{\mathcal{X}} U_3 O_{\mathcal{X}} U_1 |\psi_0\rangle\|^2.$$

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- $2 \mathcal{D} \subseteq \{0,1\}^n.$
- $O_{\scriptscriptstyle X}: |j\rangle \mapsto (-1)^{\scriptscriptstyle X_j} |j\rangle .$

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- $2 \mathcal{D} \subseteq \{0,1\}^n.$

- Define object *L*.
- Convert object into quantum algorithm.

Goal: Design algorithm for boolean function *f*:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.

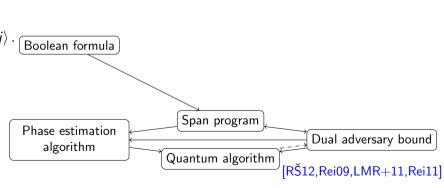
Framework:

- Define object *L*.
- Convert object into quantum algorithm.

Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_x: |j\rangle \mapsto (-1)^{x_j} |j\rangle$. Boolean formula

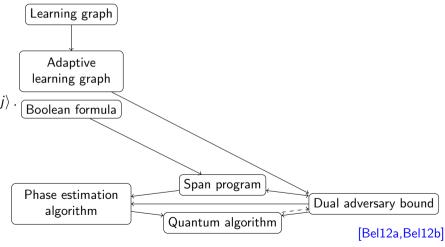
- Define object *L*.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- $2 \mathcal{D} \subseteq \{0,1\}^n.$
- $O_{\scriptscriptstyle X}: |j\rangle \mapsto (-1)^{\scriptscriptstyle X_j} |j\rangle \ .$

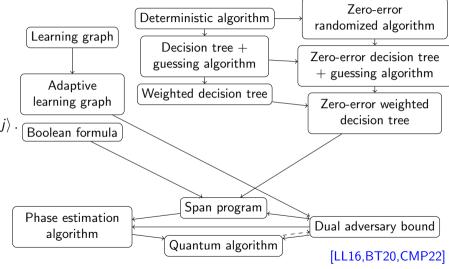
- Define object *L*.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\times}: |j\rangle \mapsto (-1)^{\chi_j} |j\rangle.$

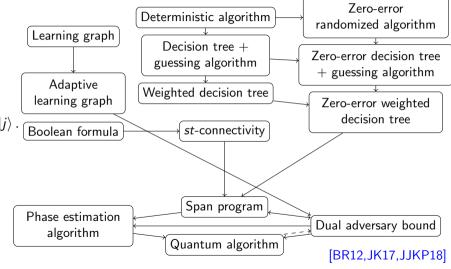
- Define object L.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$

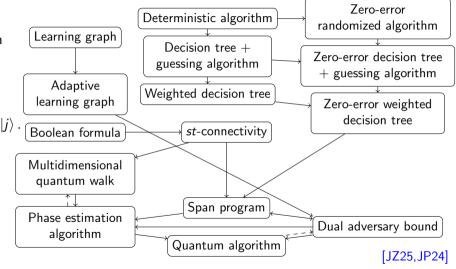
- Define object L.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0,1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$

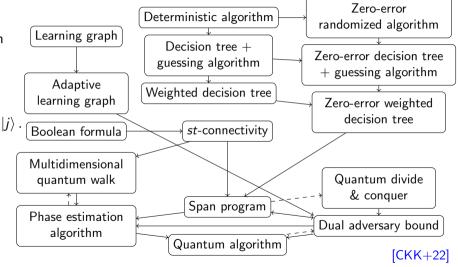
- Define object *L*.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$

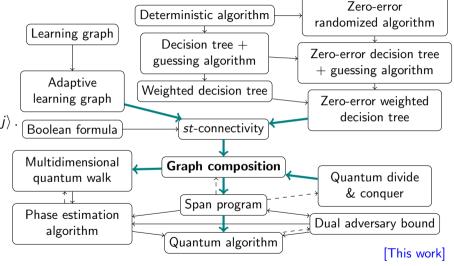
- Define object *L*.
- Convert object into quantum algorithm.



Goal: Design algorithm for boolean function f:

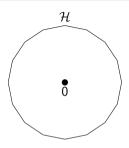
- **1** $f: \mathcal{D} \to \{0, 1\}.$
- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$

- Define object *L*.
- Convert object into quantum algorithm.

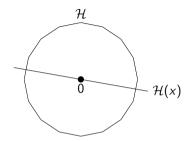


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

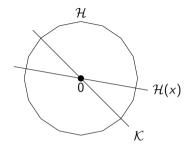
● Hilbert space: H.



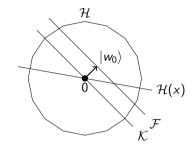
- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.



- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.



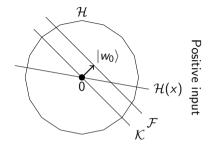
- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.



Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

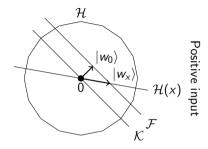


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **2** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$

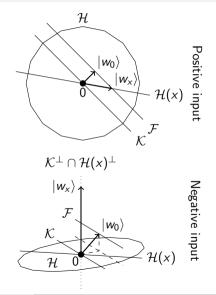


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
- $w_{-}(x, \mathcal{P}) = \min\{\||w\rangle\|^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$

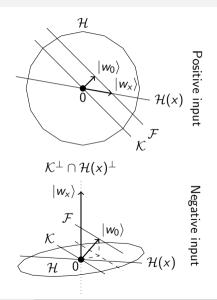


Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Positive vs. negative inputs:

- $w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$
- $w_{-}(x, \mathcal{P}) = \min\{||w\rangle||^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$
- $C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$



Span program: $\mathcal{P} = (\mathcal{H}, x \mapsto \mathcal{H}(x), \mathcal{K}, |w_0\rangle)$ on \mathcal{D} .

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

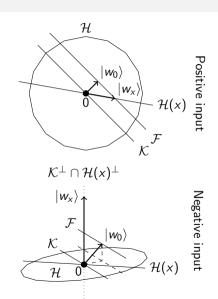
Positive vs. negative inputs:

$$w_+(x,\mathcal{P}) = \min\{\||w\rangle\|^2 : |w\rangle \in \mathcal{F} \cap \mathcal{H}(x)\}.$$

$$w_{-}(x, \mathcal{P}) = \min\{\||w\rangle\|^{2} : |w\rangle \in \mathcal{K}^{\perp} \cap \mathcal{H}(x)^{\perp}, \langle w_{0}|w\rangle = 1\}.$$

$$C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$$

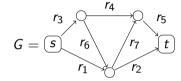
Thm: $Q(f; 2\Pi_{\mathcal{H}(x)} - I) = O(C(\mathcal{P}))$ [Rei11].



Electrical networks and span programs [BR12, JK17, JJKP18]

Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$.



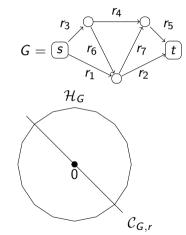
Electrical networks and span programs [BR12, JK17, JJKP18]

Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$.

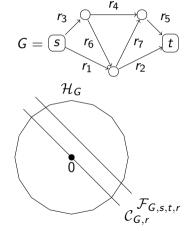
• Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.



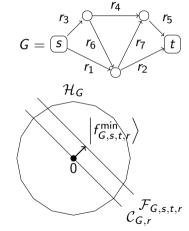
- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in F} f_e \sqrt{f_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.



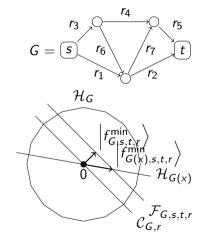
- **1** Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.



- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $C_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.



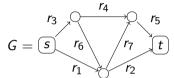
- Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \operatorname{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $C_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.
- **5** Subgraph: $x \in \{0,1\}^E \mapsto G(x) \mapsto \mathcal{H}_{G(x)} \subseteq \mathcal{H}_G$.

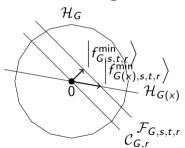


Graph G = (V, E), resistances $r : E \to [0, \infty]$, $s, t \in V$.

- **1** Flow: $f: E \to \mathbb{C}$. Flow space: $\mathcal{H}_G = \text{Span}\{|e\rangle : e \in E\}$, $f \mapsto |f_{G,r}\rangle = \sum_{e \in E} f_e \sqrt{r_e} |e\rangle$.
- ② Circulation: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = 0$. Circulation space: $\mathcal{C}_{G,r} \subseteq \mathcal{H}_G$.
- **1** Unit st-flow: flow f with $\forall v \in V$, $\sum_{v \in N^+(v)} f_e \sum_{v \in N^-(v)} f_e = \delta_{v,s} \delta_{v,t}$. Unit st-flow subspace: $\mathcal{F}_{G,s,t} \subseteq \mathcal{H}_G$.
- Effective resistance: $R_{G,s,t,r} := |||f_{G,s,t,r}^{\min}\rangle||^2$.
- **5** Subgraph: $x \in \{0,1\}^E \mapsto G(x) \mapsto \mathcal{H}_{G(x)} \subseteq \mathcal{H}_G$.

st-connectivity span program: $(\mathcal{H}_G, x \mapsto \mathcal{H}_{G(x)}, \mathcal{C}_{G,r}, |f_{G,s,t,r}^{\min}\rangle)$.

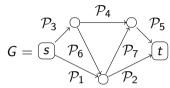




- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .



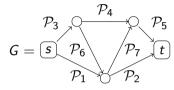
Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

- $0 \mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e$
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$



Graph composition:

- **1** Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

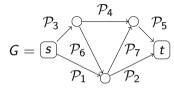
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$.

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



Graph composition:

- **1** Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

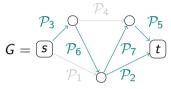
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$.

- $w_+(x, \mathcal{P}) = R_{G,s,t,r^+} \text{ with } r_+(e) = w_+(x, \mathcal{P}_e).$
- $w_{-}(x,\mathcal{P}) = R_{G.s.t.r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



Graph composition:

- Undirected graph G = (V, E).
- 2 Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

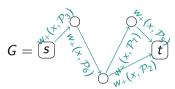
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$.

- $w_+(x, \mathcal{P}) = R_{G,s,t,r^+} \text{ with } r_+(e) = w_+(x, \mathcal{P}_e).$
- $w_{-}(x,\mathcal{P}) = R_{G.s.t.r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



Graph composition:

- Undirected graph G = (V, E).
- 2 Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

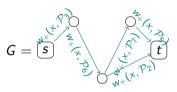
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

Main theorem: For all $x \in \mathcal{D}$.

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G.s.t.r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



$$w_+(x,\mathcal{P})=R_{G,s,t,r^+}.$$

Graph composition:

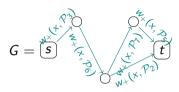
- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$
- $\bullet \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = |||w_0^e\rangle||^2.$
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

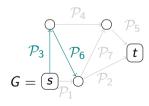
Main theorem: For all $x \in \mathcal{D}$.

- $w_+(x, \mathcal{P}) = R_{G,s,t,r^+} \text{ with } r_+(e) = w_+(x, \mathcal{P}_e).$
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



$$w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$$

Negative witness size $w_-(x, \mathcal{P})$:



Graph composition:

- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

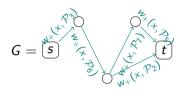
Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$

- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

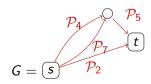
Main theorem: For all $x \in \mathcal{D}$.

- $w_+(x, \mathcal{P}) = R_{G,s,t,r^+} \text{ with } r_+(e) = w_+(x, \mathcal{P}_e).$
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative witness size $w_{-}(x, \mathcal{P})$:



Graph composition:

- Undirected graph G = (V, E).
- **2** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

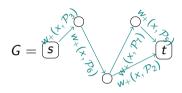
Formally: Span program \mathcal{P} on \mathcal{D} :

- $0 \mathcal{H} = \bigoplus_{e \in E} \mathcal{H}_e$
- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$
- $\bullet \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = |||w_0^e\rangle||^2.$
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

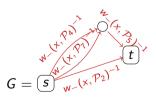
Main theorem: For all $x \in \mathcal{D}$.

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.

Positive witness size:



 $w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$ Negative witness size $w_{-}(x, \mathcal{P})$:



Graph composition:

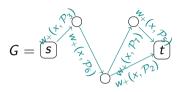
- Undirected graph G = (V, E).
- ② Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Formally: Span program \mathcal{P} on \mathcal{D} :

- $\mathcal{H}(x) = \bigoplus_{e \in E} \mathcal{H}_e(x)$
- $\bullet \ \mathcal{K} = \mathcal{E}(\mathcal{C}_{G,r}) \oplus \bigoplus_{e \in E} \mathcal{K}_e, \text{ with } r_e = |||w_0^e\rangle||^2.$
- $|w_0\rangle = \mathcal{E}(|f_{G,s,t,r}^{\min}\rangle).$

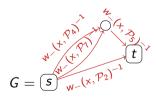
Main theorem: For all $x \in \mathcal{D}$.

- **1** $w_+(x, \mathcal{P}) = R_{G,s,t,r^+}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.
- $w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$ with $r^{-}(e) = w_{-}(x,\mathcal{P}_{e})^{-1}$.



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative witness size $w_{-}(x, \mathcal{P})$:



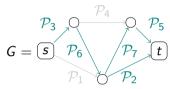
$$w_{-}(x, \mathcal{P}) = R_{G, s, t, r^{-}}^{-1}$$

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

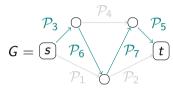
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



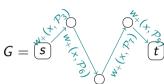
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



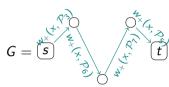
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



Theorem: For all $x \in \mathcal{D}$,

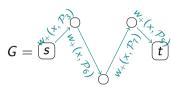
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



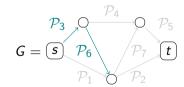
$$w_+(x,\mathcal{P}) \leq \sum_{e \in P} w_+(x,\mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

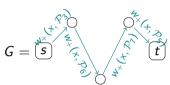


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

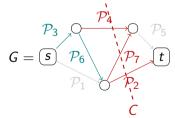


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

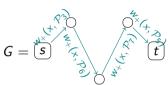


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

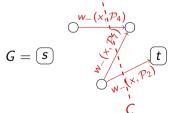


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

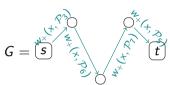


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

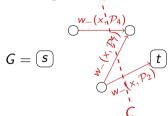


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



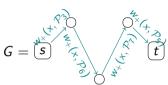
$$w_{-}(x,\mathcal{P}) \leq \sum_{e \in C} w_{-}(x,\mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

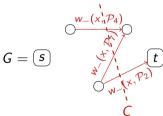
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_e)$.

Properties:

- Simpler (less-powerful) version.
- Still powerful enough for many applications.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



$$w_{-}(x,\mathcal{P}) \leq \sum_{e \in C} w_{-}(x,\mathcal{P}_e).$$

Trivial span program: $(\alpha > 0)$

- ② $w_{+}(x, x_{i}) = \alpha$, if $x_{i} = 1$.
- **3** $w_{-}(x,x_{j}) = 1/\alpha$, if $x_{j} = 0$.

Trivial span program: $(\alpha > 0)$

- **2** $w_+(x,x_j) = \alpha$, if $x_j = 1$.
- **3** $w_{-}(x,x_{j})=1/\alpha$, if $x_{j}=0$.

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$

Trivial span program: $(\alpha > 0)$

$$w_{+}(x,x_{j})=\alpha$$
, if $x_{j}=1$.

3
$$w_{-}(x, x_{j}) = 1/\alpha$$
, if $x_{j} = 0$.

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$

Trivial span program: $(\alpha > 0)$

- **2** $w_+(x,x_j) = \alpha$, if $x_j = 1$.
- **3** $w_{-}(x, x_{j}) = 1/\alpha$, if $x_{j} = 0$.

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$



Trivial span program: $(\alpha > 0)$

$$w_{+}(x,x_{i}) = \alpha$$
, if $x_{i} = 1$.

3
$$w_{-}(x, x_{j}) = 1/\alpha$$
, if $x_{j} = 0$.

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|} \le 1.$$

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$

$$x=1010\cdots 0\Rightarrow w_+(x)=\tfrac{1}{2}$$

Trivial span program: $(\alpha > 0)$

2
$$w_+(x, x_j) = \alpha$$
, if $x_j = 1$.

3
$$w_{-}(x,x_{j}) = 1/\alpha$$
, if $x_{j} = 0$.

The OR-function:

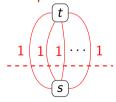
$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases}
1, & \text{if } |x| \ge 1, \\
0, & \text{if } |x| = 0.
\end{cases}$$

$$w_+(x) = \frac{1}{|x|} \le 1.$$

$$w_{-}(x) = n$$

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$



$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

Trivial span program: $(\alpha > 0)$

2
$$w_+(x, x_j) = \alpha$$
, if $x_j = 1$.

3
$$w_{-}(x,x_{j}) = 1/\alpha$$
, if $x_{j} = 0$.

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

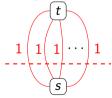
$$w_+(x) = \frac{1}{|x|} \le 1.$$

$$w_{-}(x) = n.$$

$$C(\mathcal{P}) = \sqrt{n}.$$

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$



$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

Example: OR-function

Trivial span program: $(\alpha > 0)$

2
$$w_+(x,x_j) = \alpha$$
, if $x_j = 1$.

3
$$w_{-}(x, x_{j}) = 1/\alpha$$
, if $x_{j} = 0$.

The OR-function:

$$\begin{array}{l}
\mathbf{O} \ \mathrm{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|} \le 1.$$

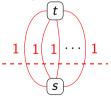
3
$$w_{-}(x) = n$$
.

$$C(\mathcal{P}) = \sqrt{n}.$$

Trivial span program for x_j :

$$\begin{array}{c}
\alpha x_j \\
(\alpha > 0).
\end{array}$$

Graph composition for OR_n :



$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

Example: OR-function

Trivial span program: $(\alpha > 0)$

2
$$w_+(x,x_j) = \alpha$$
, if $x_j = 1$.

3
$$w_{-}(x,x_{j})=1/\alpha$$
, if $x_{j}=0$.

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|} \le 1.$$

3
$$w_{-}(x) = n$$
.

$$C(\mathcal{P}) = \sqrt{n}.$$

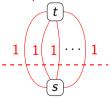
$$\mathbf{0} \Rightarrow \mathsf{Q}(\mathrm{OR}_n) \in O(\sqrt{n}).$$

Quadratic speed-up for search.

Trivial span program for x_j :

$$\begin{array}{c|c}
 & \alpha x_j \\
\hline
 & (\alpha > 0).
\end{array}$$

Graph composition for OR_n :



$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

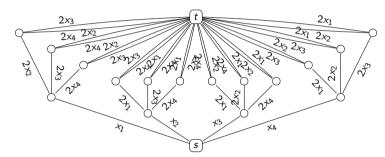
The threshold function: $(k \in [n])$

$$\mathbf{1} \quad \text{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\text{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}$$

The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \text{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\text{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

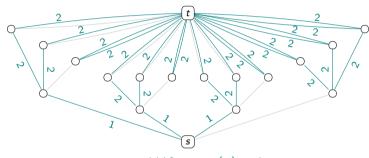
Graph composition for Th_4^3 :



The threshold function: $(k \in [n])$

- $\begin{array}{l}
 \mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
 \operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
 \end{array}$
- $w_+(x) = \frac{1}{|x|-k+1}$

Graph composition for Th_4^3 :



$$x = 1110 \Rightarrow w_{+}(x) = 1$$

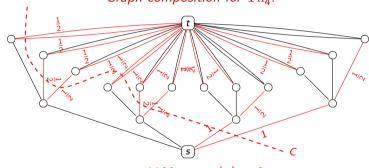
The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

3
$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

Graph composition for Th₄³:



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

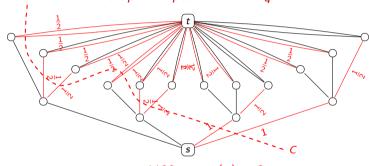
$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

Graph composition for Th_4^3 :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

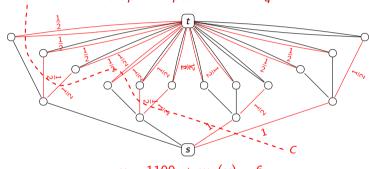
$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

Graph composition for Th₄³:



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

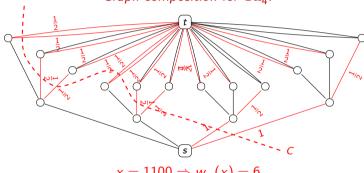
$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

$$\Rightarrow \mathsf{Q}(\mathrm{Th}_n^k) \in \\ O(\sqrt{k(n-k+1)}).$$

Known to be optimal!

Graph composition for Th_4^3 :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

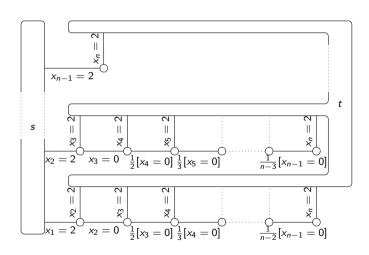
$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

1 $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$

$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

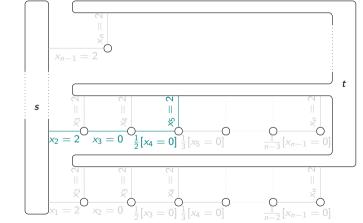
1
$$f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$$



$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

1
$$f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$$

Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$ $\Rightarrow w_{+}(x, \mathcal{P}) \leq 1 + \sum_{i=1}^{\ell} \frac{1}{i} + 1 \in O(\log(n)).$

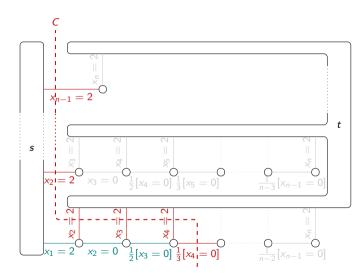


$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

- **1** $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$
- 2 Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$

$$\Rightarrow w_+(x,\mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$$

① Let x be a negative instance. $x = 2 \underbrace{001}_{\ell_1=3} 102 \underbrace{0001}_{\ell_2=4} 002 \underbrace{001}_{\ell_3=3} \cdots$ $\Rightarrow w_-(x, \mathcal{P}) \leq n + \sum_{i=1}^k 2\ell_i \in O(n)$.

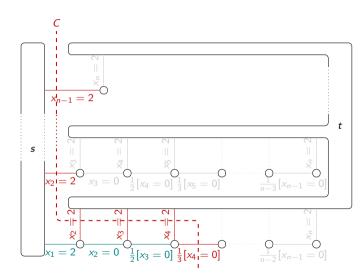


$$\Sigma = \{0, 1, 2\}, f : \Sigma^n \to \{0, 1\}.$$

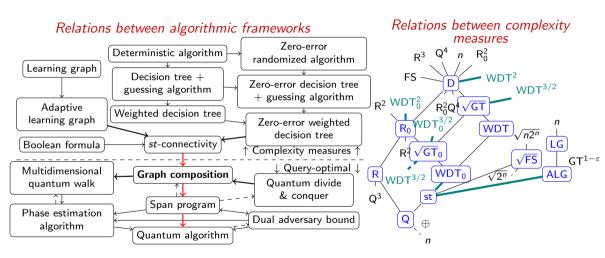
- **1** $f(x) = [x \in \Sigma^* 20^* 2\Sigma^*].$
- 2 Let x be a positive instance. $x = \cdots 0102 \underbrace{000000}_{\text{length } \ell} 2100 \cdots$

$$\Rightarrow w_+(x, \mathcal{P}) \leq 1 + \sum_{j=1}^{\ell} \frac{1}{j} + 1 \in O(\log(n)).$$

- ① Let x be a negative instance. $x = 2 \underbrace{001}_{\ell_1=3} \underbrace{102 \underbrace{0001}_{\ell_2=4} 002}_{\ell_3=3} \underbrace{001}_{\ell_3=3} \cdots$ $\Rightarrow w_-(x, \mathcal{P}) \leq n + \sum_{j=1}^k 2\ell_j \in O(n).$
- $C(\mathcal{P}) \in O(\sqrt{n \log(n)}).$



Relations between algorithmic frameworks Zero-error Deterministic algorithm randomized algorithm Learning graph Decision tree + Zero-error decision tree guessing algorithm + guessing algorithm Adaptive Weighted decision tree learning graph Zero-error weighted decision tree st-connectivity Boolean formula Complexity measures \downarrow Query-optimal \downarrow Multidimensional **Graph composition** Quantum divide quantum walk & conquer Span program Phase estimation Dual adversary bound algorithm Quantum algorithm



Graph composition:

Graph composition:

- Definition:
 - st-connectivity with edge span programs.

Graph composition:

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.

Graph composition:

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.

Graph composition:

- **•** Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.

Graph composition:

- Definition:
 - 1 st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \bigcirc OR \circ pSEARCH.
 - Oyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Graph composition:

- Definition:
 - **1** st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Subsequent developments:

- In this talk:
 - OR, Threshold.
 - ② The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \circ OR \circ pSEARCH.
 - **3** Dyck-language recognition with depth 3.
 - **3** 3-increasing subsequence.

Graph composition:

- Definition:
 - **1** st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Subsequent developments:
 - Time-efficient implementation.

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \bigcirc OR \circ pSEARCH.
 - 3 Dyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Graph composition:

- Definition:
 - 1 st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Subsequent developments:
 - Time-efficient implementation.
 - @ Generalization to switches.

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \circ OR \circ pSEARCH.
 - 3 Dyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Graph composition:

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Subsequent developments:
 - Time-efficient implementation.
 - @ Generalization to switches.
 - Inclusion of quantum walk algorithms.

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \circ OR \circ pSEARCH.
 - **3** Dyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Graph composition:

- Definition:
 - st-connectivity with edge span programs.
- Analysis:
 - Exact witness characterization using effective resistances.
 - Path-cut theorem: weaker but easier to apply.
- Subsequent developments:
 - Time-efficient implementation.
 - @ Generalization to switches.
 - Inclusion of quantum walk algorithms.

Examples:

- In this talk:
 - OR, Threshold.
 - 2 The $\Sigma^*20^*2\Sigma^*$ -problem.
- In the paper:
 - Pattern matching.
 - \circ OR \circ pSEARCH.
 - **3** Dyck-language recognition with depth 3.
 - **3**-increasing subsequence.

Thanks for your attention! ajcornelissen@outlook.com

References (I/III)

- [AGJ21] Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search.
- [Bel12b] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.
- [Bel12a] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness.
 - [BR12] Aleksandrs Belovs and Ben W Reichardt. Span programs and quantum algorithms for *st*-connectivity and claw detection.
 - [BT20] Salman Beigi and Leila Taghavi. Quantum speedup based on classical decision trees.
- [CKK+22] Andrew M Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang. Quantum divide and conquer.
 - [CMP22] Arjan Cornelissen, Nikhil S Mande, and Subhasree Patro. Improved quantum query upper bounds based on classical decision trees.
 - [JJKP18] Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms for connectivity and related problems.

References (II/III)

- [JK17] Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula evaluation.
- [JP24] Stacey Jeffery and Galina Pass. Multidimensional quantum walks, recursion, and quantum divide & conquer.
- [JZ25] Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks, with application to k-distinctness.
- [LL16] Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper bounds on quantum query complexity inspired by the elitzur–vaidman bomb tester.
- [LMR+11] Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek, and Mario Szegedy. Quantum query complexity of state conversion.
 - [Rei09] Ben W Reichardt. Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function.
 - [Rei11] Ben W Reichardt. Reflections for quantum query algorithms.

References (III/III)

[RŠ12] Ben Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating formulas.

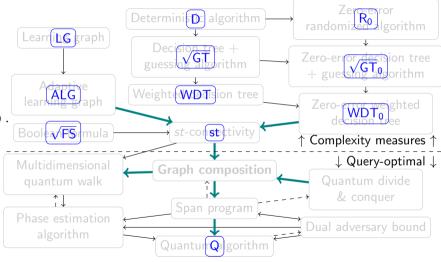
Quantum algorithmic frameworks (for boolean functions)

Goal: Design algorithm for boolean function f:

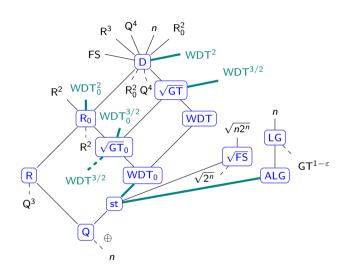
- **1** $f: \mathcal{D} \to \{0, 1\}.$
- **2** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\times}: |j\rangle \mapsto (-1)^{x_j} |j\rangle.$

Framework:

- Define object L.
- Convert object into quantum algorithm.



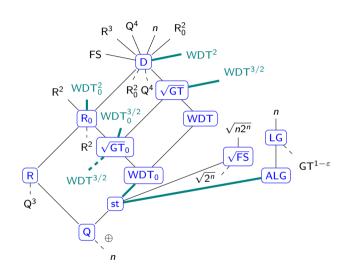
Complexity measure relations for total boolean functions



Legend:

$$\begin{array}{ccccc} & & \mathsf{B} & \forall f: \{0,1\}^n \to \{0,1\} \\ & & \mathsf{A}(f) \in \widetilde{O}(\mathsf{B}(f)) \\ & & \mathsf{B} & \exists f: \{0,1\}^n \to \{0,1\} \\ & & & \mathsf{A}(f) \in \widetilde{O}(\mathsf{B}(f)) \\ & & & \mathsf{B} & \\ & & & \mathsf{New in this work} \end{array}$$

Complexity measure relations for total boolean functions



Legend:

$$A \qquad B \qquad \forall f: \{0,1\}^n \to \{0,1\}$$

$$A(f) \in \widetilde{O}(\mathsf{B}(f))$$

$$A \qquad B \qquad \exists f: \{0,1\}^n \to \{0,1\}$$

$$A(f) \in \widetilde{O}(\mathsf{B}(f))$$

$$A \qquad B \qquad \mathsf{New in this work}$$

Open questions:

- Separation between Q and st?
- ② Can we prove $R \in \widetilde{O}(st^2)$?