A sublinear time quantum algorithm for approximating partition functions

arXiv:2207.08643

Arjan Cornelissen¹, Yassine Hamoudi²

¹QuSoft, University of Amsterdam, the Netherlands ²Simon's Institute, UC Berkeley, USA

January 22nd, 2023

Research Center for Quantum Software

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

January 22nd, 2023

1/9

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

G = (V, E)

Sub-linear algo. approximating partition functions

G = (V, E)

• Independent set: $S \subseteq V : E(S) = \emptyset$.

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

January 22nd, 2023

• • = • • = •

G=(V,E)

• Independent set: $S \subseteq V : E(S) = \emptyset$.

• *Problem:* count no. independent sets, *k*.

< ∃ >

G=(V,E)

- Independent set: $S \subseteq V : E(S) = \emptyset$.
- *Problem:* count no. independent sets, *k*.

G = (V, E)

- Independent set: $S \subseteq V : E(S) = \emptyset$.
- *Problem:* count no. independent sets, *k*.
- #P-hard in many regimes:
 - Bipartite graphs [PB83].
 - 3-regular graphs [DG00].

• . . .

G=(V,E)

- Independent set: $S \subseteq V : E(S) = \emptyset$.
- *Problem:* count no. independent sets, *k*.
- #P-hard in many regimes:
 - Bipartite graphs [PB83].
 - 3-regular graphs [DG00].

• ...

• Approximate version: find \tilde{k} such that $(1-\varepsilon)k \leq \tilde{k} \leq (1+\varepsilon)k$.

G=(V,E)

- Independent set: $S \subseteq V : E(S) = \emptyset$.
- *Problem:* count no. independent sets, *k*.
- #P-hard in many regimes:
 - Bipartite graphs [PB83].
 - 3-regular graphs [DG00].

• ...

- Approximate version: find \tilde{k} such that $(1-\varepsilon)k \leq \tilde{k} \leq (1+\varepsilon)k$.
- Can be done efficiently! (FPRAS)

G=(V,E)

- Independent set: $S \subseteq V : E(S) = \emptyset$.
- *Problem:* count no. independent sets, *k*.
- #P-hard in many regimes:
 - Bipartite graphs [PB83].
 - 3-regular graphs [DG00].

• ...

- Approximate version: find \tilde{k} such that $(1-\varepsilon)k \leq \tilde{k} \leq (1+\varepsilon)k$.
- Can be done efficiently! (FPRAS)
- Through partition function estimation.

4 E

Example: counting independent sets

• State space: Ω .

Example: counting independent sets

• Ω : all independent sets.

- State space: Ω .
- Hamiltonian: $H : \Omega \to \mathbb{Z}_{\geq 0}$.

Example: counting independent sets

• Ω : all independent sets.

•
$$H(\omega) = |\omega|$$
.

- State space: Ω .
- Hamiltonian: $H : \Omega \to \mathbb{Z}_{\geq 0}$.
- Partition function: $Z : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $Z(\beta) = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$.

Example: counting independent sets

• Ω: all independent sets.

•
$$H(\omega) = |\omega|$$
.

< ∃

- State space: Ω .
- Hamiltonian: $H: \Omega \to \mathbb{Z}_{\geq 0}$.
- Partition function: $Z : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $Z(\beta) = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$.

Example: counting independent sets

• Ω: all independent sets.

•
$$H(\omega) = |\omega|.$$

•
$$Z(0) = |\Omega|$$
.

•
$$Z(\infty) = 1$$
.

- E

< 3 >

- State space: Ω .
- Hamiltonian: $H: \Omega \to \mathbb{Z}_{\geq 0}$.
- Partition function: $Z : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $Z(\beta) = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$.
- **Problem:** Approximate $Z(\infty)/Z(0)$.

Example: counting independent sets

• Ω: all independent sets.

•
$$H(\omega) = |\omega|.$$

•
$$Z(0) = |\Omega|$$
.

•
$$Z(\infty) = 1$$
.

< ∃⇒

- State space: Ω.
- Hamiltonian: $H: \Omega \to \mathbb{Z}_{\geq 0}$.
- Partition function: $Z : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $Z(\beta) = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$.
- *Problem:* Approximate $Z(\infty)/Z(0)$.
- Originates in statistical physics.

Example: counting independent sets

• Ω: all independent sets.

•
$$H(\omega) = |\omega|.$$

•
$$Z(0) = |\Omega|$$

•
$$Z(\infty) = 1$$
.

< ∃ >

- *State space:* Ω.
- Hamiltonian: $H: \Omega \to \mathbb{Z}_{\geq 0}$.
- Partition function: $Z : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $Z(\beta) = \sum_{\omega \in \Omega} e^{-\beta H(\omega)}$.
- **Problem:** Approximate $Z(\infty)/Z(0)$.
- Originates in statistical physics.
- Applications:
 - Counting independent sets.
 - Counting *k*-colorings.
 - Counting matchings.
 - Computing the volume of a convex body.

Example: counting independent sets

Ω: all independent sets.

•
$$H(\omega) = |\omega|.$$

•
$$Z(0) = |\Omega|$$
.

•
$$Z(\infty) = 1$$
.

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

January 22nd, 2023

э

4/9

- Cooling schedule:
 - $0=\beta_0<\beta_1,\ldots,\beta_{\ell-1}<\beta_\ell=\infty.$

Sub-linear algo. approximating partition functions

• Cooling schedule:

$$0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty.$$

• Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$

Sub-linear algo. approximating partition functions

< 3

• Cooling schedule:

$$0=\beta_0<\beta_1,\ldots,\beta_{\ell-1}<\beta_\ell=\infty.$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

Sub-linear algo. approximating partition functions

< E

4/9

• Cooling schedule:

$$0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty.$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Sub-linear algo. approximating partition functions

4/9

Left to do:

- Cooling schedule:
 - $0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty.$
- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \cdots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Sub-linear algo. approximating partition functions

• Cooling schedule:

$$0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \cdots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Left to do:

• Choose β_k 's s.t. $\frac{\operatorname{Var}[X_k]}{\mathbb{E}[X_k]^2} = \mathcal{O}(1).$

Sub-linear algo. approximating partition functions

January 22nd, 2023

4/9

• Cooling schedule:

$$0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty.$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_{1})}{Z(\beta_{0})}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Left to do:

- Choose β_k 's s.t. $\frac{\operatorname{Var}[X_k]}{\mathbb{E}[X_k]^2} = \mathcal{O}(1).$
 - Always possible with $\ell = \widetilde{\mathcal{O}}(\sqrt{\log |\Omega|}) \text{ [ŠVV09]}.$

• Cooling schedule:

$$0=\beta_0<\beta_1,\ldots,\beta_{\ell-1}<\beta_\ell=\infty.$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Left to do:

- Choose β_k 's s.t. $\frac{\operatorname{Var}[X_k]}{\mathbb{E}[X_k]^2} = \mathcal{O}(1).$
 - Always possible with $\ell = \widetilde{\mathcal{O}}(\sqrt{\log |\Omega|}) \text{ [ŠVV09]}.$
- Construct Markov processes, with
 - Stationary distribution π_k .
 - Mixing time $\tau_k \leq MT$.

4/9

• Cooling schedule:

$$0 = \beta_0 < \beta_1, \ldots, \beta_{\ell-1} < \beta_\ell = \infty.$$

- Telescoping product: $\frac{Z(\infty)}{Z(0)} = \frac{Z(\beta_{\ell})}{Z(\beta_{\ell-1})} \cdot \frac{Z(\beta_{\ell-1})}{Z(\beta_{\ell-2})} \cdot \dots \cdot \frac{Z(\beta_1)}{Z(\beta_0)}.$
- Rewriting:

$$\frac{Z(\beta_{k+1})}{Z(\beta_k)} = \sum_{\omega \in \Omega} \underbrace{\frac{e^{-\beta_k H(\omega)}}{Z(\beta_k)}}_{\pi_k(\omega)} \cdot \underbrace{e^{-(\beta_{k+1} - \beta_k)H(\omega)}}_{X_k(\omega)}$$
$$= \underbrace{\mathbb{E}}_{\omega \sim \pi_k} [X_k].$$

• Gibbs distribution: π_k .

Left to do:

- Choose β_k 's s.t. $\frac{\operatorname{Var}[X_k]}{\mathbb{E}[X_k]^2} = \mathcal{O}(1).$
 - Always possible with $\ell = \widetilde{\mathcal{O}}(\sqrt{\log |\Omega|}) \text{ [ŠVV09]}.$
- Construct Markov processes, with
 - Stationary distribution π_k .
 - Mixing time $\tau_k \leq MT$.

Steps required: $\mathcal{O}(\ell \cdot \frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}).$

4/9

3

	Classical	Quantum, prev.	Quantum, new
Independent set	$\widetilde{\mathcal{O}}(rac{ V ^2}{arepsilon^2})$	$\widetilde{\mathcal{O}}(rac{ V ^{1.5}}{arepsilon})$	$\widetilde{\mathcal{O}}(rac{ V ^{1.25}}{arepsilon})$
Graph colorings	$\widetilde{\mathcal{O}}(rac{ V ^2}{arepsilon^2})$	$\widetilde{\mathcal{O}}(rac{ V ^{1.5}}{arepsilon})$	$\widetilde{\mathcal{O}}(rac{ V ^{1.25}}{arepsilon})$
Graph matchings	$\widetilde{\mathcal{O}}(rac{ V E }{arepsilon^2})$	$\widetilde{\mathcal{O}}(rac{ V E ^{0.5}}{arepsilon})$	$\widetilde{\mathcal{O}}(rac{ V ^{0.75} E ^{0.5}}{arepsilon})$
Volume convex body	$\widetilde{\mathcal{O}}(d^{3.5} + rac{d^2}{arepsilon^2})$	$\widetilde{\mathcal{O}}(d^3 + rac{d^{2.5}}{arepsilon})$	$\widetilde{\mathcal{O}}(d^3 + rac{d^{2.25}}{arepsilon})$

Sub-linear algo. approximating partition functions

• Classical cost: $\mathcal{O}\left(\ell \cdot \frac{\ell}{r^2} \cdot \mathrm{MT}\right)$

• Quantum cost: $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\epsilon^2}} \cdot \mathrm{MT}\right)$ (this work)

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

< □ ▶ < □ ▶ < □ ▶ < ⊇ ▶ < ⊇
 January 22nd, 2023

New component:

New component:

Given

• a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.

$$rac{\mathsf{Var}[X]}{\mathbb{E}[X]^2} = \mathcal{O}(1)$$

$$|\omega\rangle - O_X - |\omega\rangle - |X(\omega)\rangle$$

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$

$$rac{\mathsf{Var}[X]}{\mathbb{E}[X]^2} = \mathcal{O}(1)$$

$$|\omega\rangle - O_X - |\omega\rangle - |X(\omega)\rangle$$

< ∃→

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$
- a routine that reflects around $|\pi\rangle$.

$$rac{\mathsf{Var}[X]}{\mathbb{E}[X]^2} = \mathcal{O}(1)$$

$$|\omega\rangle = O_X = |\omega\rangle = |\omega\rangle = |X(\omega)\rangle$$

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$
- a routine that reflects around $|\pi\rangle$.

estimate $\mu := \mathop{\mathbb{E}}_{\omega \sim \pi} [X]$

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$
- a routine that reflects around $|\pi\rangle$.

estimate $\mu := \mathop{\mathbb{E}}_{\omega \sim \pi} [X]$

• Unbiasedly.

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$
- a routine that reflects around $|\pi\rangle$.

estimate $\mu := \mathop{\mathbb{E}}_{\omega \sim \pi} [X]$

- Unbiasedly.
- With low relative variance.

E \ 21

New component:

Given

- a random variable $X : \Omega \to \mathbb{R}$, with $O_X : |\omega\rangle |0\rangle \mapsto |\omega\rangle |X(\omega)\rangle$, with bounded relative variance.
- a distribution π , with a single copy of $|\pi\rangle = \sum_{\omega \in \Omega} \sqrt{\pi(\omega)} |\omega\rangle.$
- a routine that reflects around $|\pi\rangle$.

estimate $\mu := \mathop{\mathbb{E}}_{\omega \sim \pi} [X]$

- Unbiasedly.
- With low relative variance.
- Non-destructively.

(4) (E) (A) (E)

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

▲ □ ▶ ▲ 圖 ▶ ▲ ■ ▶ ▲ ■ ▶
January 22nd, 2023

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .

3

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.

Sub-linear algo. approximating partition functions

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .

Sub-linear algo. approximating partition functions

(4) (2) (4) (4) (4)

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .

Sub-linear algo. approximating partition functions

(4) (2) (4) (4) (4)

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .

Sub-linear algo. approximating partition functions

• • • • • • • •

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .
 - Unbiased estimator of $e^{2\pi i\varphi}$.

Sub-linear algo. approximating partition functions

(4) (2) (4) (4) (4)

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .
 - Unbiased estimator of $e^{2\pi i\varphi}$.
- Gives unbiased estimator for $p = \sin^2(\pi \varphi) = \frac{1}{2}(1 \operatorname{Re}[e^{2\pi i \varphi}]).$

(4) (E) (A) (E)

- Phase estimation:
 - Given a copy of $|\psi\rangle$, and U s.t. $U |\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
 - Standard approach: finite outcome set.
 - Symmetrization [LdW21]:
 - Let $\theta \in [0, 1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$
 - Correct for choice of θ .
 - Unbiased estimator of $e^{2\pi i\varphi}$.
- Gives unbiased estimator for $p = \sin^2(\pi \varphi) = \frac{1}{2}(1 - \operatorname{Re}[e^{2\pi i \varphi}]).$
- Plug into mean estimation routines [Mon15].

Non-destructiveness

A.J. Cornelissen (QuSoft)

Sub-linear algo. approximating partition functions

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
January 22nd, 2023

• We start in state $|\pi\rangle$.

< ∃ >

э

Image: A match a ma

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\{|\pi\rangle, |\pi^{\perp}\rangle\}.$

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\{|\pi\rangle, |\pi^{\perp}\rangle\}.$
- State reconstruction [MW05]:
 - Run subroutine \mathcal{A} .
 - Measure in $\{|\pi \rangle\!\langle \pi|, \left|\pi^{\perp} \right\rangle\!\langle \pi^{\perp}|\}$ basis.
 - Repeat until $|\pi\rangle$.

→

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\{|\pi\rangle, |\pi^{\perp}\rangle\}.$
- State reconstruction [MW05]:
 - Run subroutine \mathcal{A} .
 - Measure in $\{ \left| \pi \right\rangle\!\!\left\langle \pi \right|, \left| \pi^{\perp} \right\rangle\!\!\left\langle \pi^{\perp} \right| \}$ basis.
 - Repeat until $|\pi\rangle$.

Sub-linear algo. approximating partition functions

< E

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\{|\pi\rangle, |\pi^{\perp}\rangle\}.$
- State reconstruction [MW05]:
 - Run subroutine \mathcal{A} .

 - Repeat until $|\pi\rangle$.
- Expected no. iterations: 2.

- E

< E

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\{|\pi\rangle, |\pi^{\perp}\rangle\}.$
- State reconstruction [MW05]:
 - Run subroutine \mathcal{A} .

 - Repeat until $|\pi\rangle$.
- Expected no. iterations: 2.
- Improved analysis over [HW20].

4 E

< E

3

• Partition functions.

- Partition functions.
- Markov Chain Monte Carlo.

- Partition functions.
- Markov Chain Monte Carlo.
- Results:

•
$$\widetilde{O}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}}\right)$$
.
• $\widetilde{O}(\frac{\log^{3/4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}})$.

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
 - $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}}\right).$ • $\widetilde{\mathcal{O}}(\frac{\log^{3/4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}).$
- New component: mean estimation
 - Unbiased.
 - With low relative variance.
 - Non-destructive.

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
 - $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}}\right).$ • $\widetilde{\mathcal{O}}(\frac{\log^{3/4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}).$
- New component: mean estimation
 - Unbiased.
 - With low relative variance.
 - Non-destructive.

- Partition functions.
- Markov Chain Monte Carlo.
- Results:

•
$$\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}}\right).$$

• $\widetilde{\mathcal{O}}(\frac{\log^{3/4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}).$

- New component: mean estimation
 - Unbiased.
 - With low relative variance.
 - Non-destructive.

- Open questions:
 - Can we bring 3/4 down to 1/2?
 - Lower bounds?

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
 - $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^2} \cdot \mathrm{MT}}\right).$ • $\widetilde{\mathcal{O}}(\frac{\log^{3/4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}).$
- New component: mean estimation
 - Unbiased.
 - With low relative variance.
 - Non-destructive.

Thanks for your attention! arjan@cwi.nl

- Open questions:
 - Can we bring 3/4 down to 1/2?
 - Lower bounds?

Sub-linear algo. approximating partition functions

January 22nd, 2023

(1日) (1日) (1日)

References

- [AHN+22] S. Arunachalam, V. Havlicek, G. Nannicini, K. Temme, and P. Wocjan. Simpler (Classical) and Faster (Quantum) Algorithms for Gibbs Partition Functions, 2022.
- [BŠVV08] I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda, Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems, 2008.
 - [DF91] M. E. Dyer and A. Frieze, *Computing the Volume of Convex Bodies: A Case where Randomness Provably Helps*, 1991.
 - [DG00] M. Dyer and C. Greenhill, On Markov chains for independent sets, 2000.
 - [Hub15] M. Huber, Approximation Algorithms for the Normalizing Constant of Gibbs Distributions, 2015.
 - [HW20] A. W. Harrow and A. Y. Wei. Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions, 2020.

References

- [Kol18] V. Kolmogorov, A Faster Approximation Algorithm for the Gibbs Partition Function, 2018.
- [LdW21] N. Linden and R. de Wolf. Average-case verification of the Quantum Fourier Transform enables worst-case phase estimation, 2021.
- [Mon15] A. Montanaro, Quantum Speedup of Monte Carlo Methods, 2015.
- [MW05] C. Marriott and J. Watrous. *Quantum Arthur-Merlin games*, 2005.
- [PB83] J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, 1983.
- [ŠVV09] D. Štefankovič, S. Vempala, and E. Vigoda, *Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting*, 2009
- [WCNA09] P. Wocjan, C.-F. Chiang, D. Nagaj, and A. Abeyesinghe, *Quantum Algorithm* for Approximating Partition Functions, 2009.