A sublinear time quantum algorithm for approximating partition functions

```
arXiv:2207.08643
```


Arjan Cornelissen ${ }^{1}$, Yassine Hamoudi ${ }^{2}$

${ }^{1}$ QuSoft, University of Amsterdam, the Netherlands
${ }^{2}$ Simon's Institute, UC Berkeley, USA

January 22nd, 2023

Counting independent sets

Counting independent sets

$$
G=(V, E)
$$

Counting independent sets

$$
\begin{aligned}
G & =(V, E) \\
& \text { - Independent set: } S \subseteq V: E(S)=\varnothing
\end{aligned}
$$

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

- \#P-hard in many regimes:
- Bipartite graphs [PB83].
- 3-regular graphs [DGO0].
- ...

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

- \#P-hard in many regimes:
- Bipartite graphs [PB83].
- 3-regular graphs [DG00].
- Approximate version: find \tilde{k} such that $(1-\varepsilon) k \leq \widetilde{k} \leq(1+\varepsilon) k$.

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

- \#P-hard in many regimes:
- Bipartite graphs [PB83].
- 3-regular graphs [DG00].
- ...
- Approximate version: find \tilde{k} such that $(1-\varepsilon) k \leq \widetilde{k} \leq(1+\varepsilon) k$.
- Can be done efficiently! (FPRAS)

Counting independent sets

$$
G=(V, E)
$$

- Independent set: $S \subseteq V: E(S)=\varnothing$.
- Problem: count no. independent sets, k.

- \#P-hard in many regimes:
- Bipartite graphs [PB83].
- 3-regular graphs [DG00].
- ...
- Approximate version: find \tilde{k} such that $(1-\varepsilon) k \leq \widetilde{k} \leq(1+\varepsilon) k$.
- Can be done efficiently! (FPRAS)

- Through partition function estimation.

Partition functions

Example: counting independent sets

Partition functions

- State space: Ω.

Example: counting independent sets

- Ω : all independent sets.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.
- Partition function: $Z: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$,

$$
Z(\beta)=\sum_{\omega \in \Omega} e^{-\beta H(\omega)}
$$

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.
- Partition function: $Z: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$,

$$
Z(\beta)=\sum_{\omega \in \Omega} e^{-\beta H(\omega)}
$$

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.
- $Z(0)=|\Omega|$.
- $Z(\infty)=1$.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.
- Partition function: $Z: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$,

$$
Z(\beta)=\sum_{\omega \in \Omega} e^{-\beta H(\omega)}
$$

- Problem: Approximate $Z(\infty) / Z(0)$.

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.
- $Z(0)=|\Omega|$.
- $Z(\infty)=1$.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.
- Partition function: $Z: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$,

$$
Z(\beta)=\sum_{\omega \in \Omega} e^{-\beta H(\omega)}
$$

- Problem: Approximate $Z(\infty) / Z(0)$.
- Originates in statistical physics.

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.
- $Z(0)=|\Omega|$.
- $Z(\infty)=1$.

Partition functions

- State space: Ω.
- Hamiltonian: $H: \Omega \rightarrow \mathbb{Z}_{\geq 0}$.
- Partition function: $Z: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$,

$$
Z(\beta)=\sum_{\omega \in \Omega} e^{-\beta H(\omega)}
$$

- Problem: Approximate $Z(\infty) / Z(0)$.
- Originates in statistical physics.
- Applications:
- Counting independent sets.
- Counting k-colorings.
- Counting matchings.

Example: counting independent sets

- Ω : all independent sets.
- $H(\omega)=|\omega|$.
- $Z(0)=|\Omega|$.
- $Z(\infty)=1$.

- Computing the volume of a convex body.

Markov Chain Monte Carlo [DF91]

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty
$$

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e_{\pi_{k}(\omega)}^{Z\left(\beta_{k}\right)}}{e^{-\beta_{k} H(\omega)}} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right]
\end{aligned}
$$

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty .
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e^{-\beta_{k} H(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right] .
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Markov Chain Monte Carlo [DF91]

Left to do:

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdot \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{\underbrace{e^{-\beta_{k} H(\omega)}}_{\pi_{k}(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right]
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Markov Chain Monte Carlo [DF91]

Left to do:

- Choose β_{k} 's s.t. $\frac{\operatorname{Var}\left[X_{k}\right]}{\mathbb{E}\left[X_{k}\right]^{2}}=\mathcal{O}(1)$.
- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty .
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e^{-\beta_{k} H(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right] .
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty
$$

Left to do:

- Choose β_{k} 's s.t. $\frac{\operatorname{Var}\left[X_{k}\right]}{\mathbb{E}\left[X_{k}\right]^{2}}=\mathcal{O}(1)$.
- Always possible with $\ell=\widetilde{\mathcal{O}}(\sqrt{\log |\Omega|})[\mathrm{Š} \vee \vee 09]$.
- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e^{-\beta_{k} H(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right] .
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty .
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdot \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

Left to do:

- Choose β_{k} 's s.t. $\frac{\operatorname{Var}\left[X_{k}\right]}{\mathbb{E}\left[X_{k}\right]^{2}}=\mathcal{O}(1)$.
- Always possible with $\ell=\widetilde{\mathcal{O}}(\sqrt{\log |\Omega|})$ [ŠVV09].
- Construct Markov processes, with
- Stationary distribution π_{k}.
- Mixing time $\tau_{k} \leq \mathrm{MT}$.

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e^{-\beta_{k} H(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{X_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right] .
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Markov Chain Monte Carlo [DF91]

- Cooling schedule:

$$
0=\beta_{0}<\beta_{1}, \ldots, \beta_{\ell-1}<\beta_{\ell}=\infty .
$$

- Telescoping product:

$$
\frac{Z(\infty)}{Z(0)}=\frac{Z\left(\beta_{\ell}\right)}{Z\left(\beta_{\ell-1}\right)} \cdot \frac{Z\left(\beta_{\ell-1}\right)}{Z\left(\beta_{\ell-2}\right)} \cdots \cdots \frac{Z\left(\beta_{1}\right)}{Z\left(\beta_{0}\right)} .
$$

- Rewriting:

$$
\begin{aligned}
\frac{Z\left(\beta_{k+1}\right)}{Z\left(\beta_{k}\right)} & =\sum_{\omega \in \Omega} \frac{e^{-\beta_{k} H(\omega)}}{Z\left(\beta_{k}\right)} \cdot \underbrace{e^{-\left(\beta_{k+1}-\beta_{k}\right) H(\omega)}}_{x_{k}(\omega)} \\
& =\underset{\omega \sim \pi_{k}}{\mathbb{E}}\left[X_{k}\right] .
\end{aligned}
$$

- Gibbs distribution: π_{k}.

Left to do:

- Choose β_{k} 's s.t. $\frac{\operatorname{Var}\left[X_{k}\right]}{\mathbb{E}\left[X_{k}\right]^{2}}=\mathcal{O}(1)$.
- Always possible with $\ell=\widetilde{\mathcal{O}}(\sqrt{\log |\Omega|})$ [ŠVV09].
- Construct Markov processes, with
- Stationary distribution π_{k}.
- Mixing time $\tau_{k} \leq \mathrm{MT}$.

Steps required: $\mathcal{O}\left(\ell \cdot \frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$.

Results

Results

Long line of work:

[DF91;BŠVV08]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
[ŠVV09; Hub15; Kol18]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
$[$ WCNA09]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$
$[$ Mon15]	$\widetilde{\mathcal{O}}\left(\log \|\Omega\| \cdot\left(\frac{1}{\varepsilon} \sqrt{\mathrm{MT}}+\mathrm{MT}\right)\right)$
$[\mathrm{HW} 20 ;$ AHN+22]	$\widetilde{\mathcal{O}}\left(\frac{\log \|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$

Results

Long line of work:

[DF01;BŠVV08]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
$[$ ŠVV09; Hub15; Kol18]	$\left.\widetilde{\mathcal{O}} \frac{\varepsilon^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
$[$ WCNA09]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$
$[$ Mon15]	$\widetilde{\mathcal{O}}\left(\log \|\Omega\| \cdot\left(\frac{1}{\varepsilon} \sqrt{\mathrm{MT}}+\mathrm{MT}\right)\right)$
$[\mathrm{HW} 20 ;$ AHN+22]	$\widetilde{\mathcal{O}}\left(\frac{\log \|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$
This work	$\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}\|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$

Results

Long line of work:

$$
\left[\mathrm{DF91;BŠVV08]} \left\lvert\, \underset{\sim}{\mathcal{O}}\left(\frac{\log ^{2}|\Omega|}{\varepsilon^{2} \mid} \cdot \mathrm{MT}\right)\right.\right.
$$

[ŠVV09; Hub15; Kol18]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
$[$ WCNA09 $]$	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$

[Mon15] $\widetilde{\mathcal{O}}\left(\log |\Omega| \cdot\left(\frac{1}{\varepsilon} \sqrt{\mathrm{MT}}+\mathrm{MT}\right)\right)$
[HW20; AHN+22] $\widetilde{\mathcal{O}}\left(\frac{\log |\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$
This work $\widetilde{\mathcal{O}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)}$

Applications:

Classical Quantum, prev. Quantum, new
Independent set
Graph colorings
Graph matchings Volume convex body

$$
\begin{array}{ccc}
\hline \widetilde{\mathcal{O}}\left(\frac{|V|^{2}}{\varepsilon^{2}}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|^{-5}}{\varepsilon}\right) & \widetilde{\mathcal{O}}\left(\frac{\mid V V^{1.25}}{\varepsilon}\right) \\
\widetilde{\mathcal{O}}\left(\frac{\left.V V\right|^{2}}{\varepsilon^{2}}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|^{-5}}{\varepsilon}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|^{1.25}}{\varepsilon}\right) \\
\widetilde{\mathcal{O}}\left(\frac{|V|||\mid}{\varepsilon^{2}}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|\left|\left|\left.\right|^{0.5}\right.\right.}{\varepsilon}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|^{0.75}|E|^{0.5}}{\varepsilon}\right) \\
\widetilde{\mathcal{O}}\left(d^{3.5}+\frac{d^{2}}{\varepsilon^{2}}\right) & \widetilde{\mathcal{O}}\left(d^{3}+\frac{d^{2.5}}{\varepsilon}\right) & \widetilde{\mathcal{O}}\left(d^{3}+\frac{d^{2.25}}{\varepsilon}\right)
\end{array}
$$

Results

Long line of work:
[DF91;BŠVV08] $\left\lvert\, \underset{\widetilde{\mathcal{O}}\left(\frac{\log ^{2}|\Omega|}{\varepsilon^{2}}\right.}{(\mathrm{MT})}\right.$

$[$ ŠVV09; Hub15; Kol18]	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
$[$ WCNA09 $]$	$\widetilde{\mathcal{O}}\left(\frac{\log ^{2}\|\Omega\|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$

[Mon15] $\widetilde{\mathcal{O}}\left(\log |\Omega| \cdot\left(\frac{1}{\varepsilon} \sqrt{\mathrm{MT}}+\mathrm{MT}\right)\right)$
[HW20; AHN+22] $\widetilde{\mathcal{O}}\left(\frac{\log |\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$
This work $\widetilde{\mathcal{O}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)}$

Applications:

Classical Quantum, prev. Quantum, new
Independent set
$\widetilde{\mathcal{O}}\left(\frac{|V|^{2}}{\varepsilon^{2}}\right)$
$\begin{array}{cc}\text { Quantum, prev. } & \text { Quantum, new } \\ \widetilde{\mathcal{O}}\left(\frac{|V|^{1.5}}{\varepsilon}\right) & \widetilde{\mathcal{O}}\left(\frac{|V|^{1.25}}{\varepsilon}\right)\end{array}$
Graph colorings
$\widetilde{\mathcal{O}}\left(\frac{|V|^{2}}{\varepsilon^{2}}\right)$
$\widetilde{\mathcal{O}}\left(\frac{|V|^{1.5}}{\varepsilon}\right)$
Graph matchings
$\widetilde{\mathcal{O}}\left(\frac{\|V\| E \mid}{\varepsilon^{2}}\right)$
$\widetilde{\mathcal{O}}\left(\frac{|V|^{\varepsilon .25}}{\varepsilon}\right)$
$\widetilde{\mathcal{O}}\left(d^{3.5}+\frac{d^{2}}{\varepsilon^{2}}\right) \quad \widetilde{\mathcal{O}}\left(d^{3}+\frac{d^{2.5}}{\varepsilon}\right)$
$\widetilde{\mathcal{O}}\left(\frac{|V|^{0 . \tau_{5}}|E|^{0.5}}{\varepsilon}\right)$
Volume convex body
$\widetilde{\mathcal{O}}\left(d^{3}+\frac{d^{2} \cdot 25}{\varepsilon}\right)$

- Classical cost: $\mathcal{O}\left(\ell \cdot \frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}\right)$
- Quantum cost: $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$ (this work)

Unbiased, non-destructive mean estimation

Unbiased, non-destructive mean estimation

New component:

Unbiased, non-destructive mean estimation

New component: Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with $O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle$, with bounded relative variance.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle--\quad|X(\omega)\rangle
\end{aligned}
$$

Unbiased, non-destructive mean estimation

New component: Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with $O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle$,
with bounded relative variance.
- a distribution π, with a single copy of $|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle$.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle--\quad-X(\omega)\rangle
\end{aligned}
$$

Unbiased, non-destructive mean estimation

New component: Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with

$$
O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle
$$

with bounded relative variance.

- a distribution π, with a single copy of $|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle$.
- a routine that reflects around $|\pi\rangle$.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

Unbiased, non-destructive mean estimation

New component:
Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with

$$
O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle
$$

with bounded relative variance.

- a distribution π, with a single copy of $|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle$.
- a routine that reflects around $|\pi\rangle$. estimate $\mu:=\underset{\omega \sim \pi}{\mathbb{E}}[X]$

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle-|X(\omega)\rangle=2|\pi\rangle\langle\pi|-1
\end{aligned}
$$

Unbiased, non-destructive mean estimation

New component:
Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with

$$
O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle
$$

with bounded relative variance.

- a distribution π, with a single copy of $|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle$.
- a routine that reflects around $|\pi\rangle$. estimate $\mu:=\underset{\omega \sim \pi}{\mathbb{E}}[X]$
- Unbiasedly.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle-|X(\omega)\rangle \quad-2|\pi\rangle\langle\pi|-1 \\
& \hline-\mid
\end{aligned}
$$

$$
\Downarrow
$$

Unbiased, non-destructive mean estimation

New component:
Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with

$$
O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle
$$

with bounded relative variance.

- a distribution π, with a single copy of

$$
|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle
$$

- a routine that reflects around $|\pi\rangle$. estimate $\mu:=\underset{\omega \sim \pi}{\mathbb{E}}[X]$
- Unbiasedly.
- With low relative variance.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle-|X(\omega)\rangle \quad-2|\pi\rangle\langle\pi|-1 \\
& \hline-\mid
\end{aligned}
$$

\Downarrow

Unbiased, non-destructive mean estimation

New component:
Given

- a random variable $X: \Omega \rightarrow \mathbb{R}$, with

$$
O_{X}:|\omega\rangle|0\rangle \mapsto|\omega\rangle|X(\omega)\rangle
$$

with bounded relative variance.

- a distribution π, with a single copy of

$$
|\pi\rangle=\sum_{\omega \in \Omega} \sqrt{\pi(\omega)}|\omega\rangle .
$$

- a routine that reflects around $|\pi\rangle$.
estimate $\mu:=\underset{\omega \sim \pi}{\mathbb{E}}[X]$
- Unbiasedly.
- With low relative variance.
- Non-destructively.

$$
\frac{\operatorname{Var}[X]}{\mathbb{E}[X]^{2}}=\mathcal{O}(1)
$$

$$
\begin{aligned}
& |\omega\rangle-O_{X}-|\omega\rangle \\
& |0\rangle-|X(\omega)\rangle \quad-2|\pi\rangle\langle\pi|-1 \\
& \hline-\mid
\end{aligned}
$$

\Downarrow

Unbiasedness

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$, determine φ.
- Standard approach: finite outcome set.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

- Unbiased estimator of $e^{2 \pi i \varphi}$.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

- Unbiased estimator of $e^{2 \pi i \varphi}$.
- Gives unbiased estimator for $p=\sin ^{2}(\pi \varphi)=\frac{1}{2}\left(1-\operatorname{Re}\left[e^{2 \pi i \varphi}\right]\right)$.

Unbiasedness

- Phase estimation:
- Given a copy of $|\psi\rangle$, and U s.t.
$U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$,
determine φ.
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
- Let $\theta \in[0,1)$ unif. at random.
- Run PE with $e^{2 \pi i \theta} U$.
- Correct for choice of θ.

- Unbiased estimator of $e^{2 \pi i \varphi}$.
- Gives unbiased estimator for

$$
p=\sin ^{2}(\pi \varphi)=\frac{1}{2}\left(1-\operatorname{Re}\left[e^{2 \pi i \varphi}\right]\right)
$$

- Plug into mean estimation routines
 [Mon15].

Non-destructiveness

Non-destructiveness

- We start in state $|\pi\rangle$.

Non-destructiveness

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\left\{|\pi\rangle,\left|\pi^{\perp}\right\rangle\right\}$.

Non-destructiveness

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\left\{|\pi\rangle,\left|\pi^{\perp}\right\rangle\right\}$.
- State reconstruction [MW05]:

- Run subroutine \mathcal{A}.
- Measure in $\left\{|\pi\rangle\langle\pi|,\left|\pi^{\perp}\right\rangle\left\langle\pi^{\perp}\right|\right\}$ basis.
- Repeat until $|\pi\rangle$.

Non-destructiveness

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\left\{|\pi\rangle,\left|\pi^{\perp}\right\rangle\right\}$.
- State reconstruction [MW05]:

- Run subroutine \mathcal{A}.
- Measure in $\left\{|\pi\rangle\langle\pi|,\left|\pi^{\perp}\right\rangle\left\langle\pi^{\perp}\right|\right\}$ basis.
- Repeat until $|\pi\rangle$.

Non-destructiveness

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\left\{|\pi\rangle,\left|\pi^{\perp}\right\rangle\right\}$.
- State reconstruction [MW05]:

- Run subroutine \mathcal{A}.
- Measure in $\left\{|\pi\rangle\langle\pi|,\left|\pi^{\perp}\right\rangle\left\langle\pi^{\perp}\right|\right\}$ basis.
- Repeat until $|\pi\rangle$.
- Expected no. iterations: 2.

Non-destructiveness

- We start in state $|\pi\rangle$.
- Subroutine \mathcal{A} applies random rotation U in 2D-subspace $\operatorname{Span}\left\{|\pi\rangle,\left|\pi^{\perp}\right\rangle\right\}$.
- State reconstruction [MW05]:

- Run subroutine \mathcal{A}.
- Measure in $\left\{|\pi\rangle\langle\pi|,\left|\pi^{\perp}\right\rangle\left\langle\pi^{\perp}\right|\right\}$ basis.
- Repeat until $|\pi\rangle$.
- Expected no. iterations: 2.
- Improved analysis over [HW20].

Summary

Summary

- Partition functions.

Summary

- Partition functions.
- Markov Chain Monte Carlo.

Summary

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
- $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$.
- $\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$.

Summary

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
- $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$.
- $\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$.
- New component: mean estimation
- Unbiased.
- With low relative variance.
- Non-destructive.

Summary

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
- $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$.
- $\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$.
- New component: mean estimation
- Unbiased.
- With low relative variance.
- Non-destructive.

Summary

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
- $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$.
- $\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$.
- Open questions:
- Can we bring $3 / 4$ down to $1 / 2$?
- Lower bounds?
- New component: mean estimation
- Unbiased.
- With low relative variance.
- Non-destructive.

Summary

- Partition functions.
- Markov Chain Monte Carlo.
- Results:
- $\widetilde{\mathcal{O}}\left(\ell \cdot \sqrt{\frac{\ell}{\varepsilon^{2}} \cdot \mathrm{MT}}\right)$.
- $\widetilde{\mathcal{O}}\left(\frac{\log ^{3 / 4}|\Omega|}{\varepsilon} \cdot \sqrt{\mathrm{MT}}\right)$.
- Open questions:
- Can we bring $3 / 4$ down to $1 / 2$?
- Lower bounds?
- New component: mean estimation
- Unbiased.
- With low relative variance.
- Non-destructive.

Thanks for your attention! arjan@cwi.nl

References

[AHN+22] S. Arunachalam, V. Havlicek, G. Nannicini, K. Temme, and P. Wocjan. Simpler (Classical) and Faster (Quantum) Algorithms for Gibbs Partition Functions, 2022.
[BŠVV08] I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda, Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems, 2008.
[DF91] M. E. Dyer and A. Frieze, Computing the Volume of Convex Bodies: A Case where Randomness Provably Helps, 1991.
[DG00] M. Dyer and C. Greenhill, On Markov chains for independent sets, 2000.
[Hub15] M. Huber, Approximation Algorithms for the Normalizing Constant of Gibbs Distributions, 2015.
[HW20] A. W. Harrow and A. Y. Wei. Adaptive Quantum Simulated Annealing for Bayesian Inference and Estimating Partition Functions, 2020.

References

[Kol18] V. Kolmogorov, A Faster Approximation Algorithm for the Gibbs Partition Function, 2018.
[LdW21] N. Linden and R. de Wolf. Average-case verification of the Quantum Fourier Transform enables worst-case phase estimation, 2021.
[Mon15] A. Montanaro, Quantum Speedup of Monte Carlo Methods, 2015.
[MW05] C. Marriott and J. Watrous. Quantum Arthur-Merlin games, 2005.
[PB83] J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the probability that a graph is connected, 1983.
[ŠVV09] D. Štefankovič, S. Vempala, and E. Vigoda, Adaptive Simulated Annealing: A Near-Optimal Connection between Sampling and Counting, 2009
[WCNA09] P. Wocjan, C.-F. Chiang, D. Nagaj, and A. Abeyesinghe, Quantum Algorithm for Approximating Partition Functions, 2009.

