Improved Quantum Query Upper Bounds Based on Classical Decision Trees arXiv:2203. 02968

Arjan Cornelissen ${ }^{1}$, Nikhil S. Mande ${ }^{2}$, Subhasree Patro ${ }^{3}$
${ }^{1}$ QuSoft, University of Amsterdam
${ }^{2}$ QuSoft, CWI Amsterdam
${ }^{3}$ QuSoft, CWI Amsterdam
July 11th, 2022

Research Center for Quantum Software

Decision trees

Decision trees

Start Basic Requirements Check

Decision trees

In general:
(1) Rooted tree.
(2) Every node has a decision rule.
(3) Leafs are labeled by outputs.

Start Basic Requirements Check

Decision trees

In general:
(1) Rooted tree.

$$
x \in\{0,1\}^{n}
$$

(2) Every node has a decision rule.
(3) Leafs are labeled by outputs.

For the purposes of this talk:
(1) Input is a bit string $x \in\{0,1\}^{n}$,
(2) Nodes are single bit queries.
(3) Decision tree defines $f:\{0,1\}^{n} \rightarrow A$.

Decision trees

In general:
(1) Rooted tree.
(2) Every node has a decision rule.
(3) Leafs are labeled by outputs.

For the purposes of this talk:
(1) Input is a bit string $x \in\{0,1\}^{n}$,
(2) Nodes are single bit queries.
(3) Decision tree defines $f:\{0,1\}^{n} \rightarrow A$.

Examples:
(1) AND-decision tree.
(2) PARITY-decision tree.

Decision tree measures

Decision tree measures

Measures:

(1) $\operatorname{depth}(T)$ - Depth

Number of layers of decision nodes.

Decision tree measures

Measures:

(1) depth (T) - Depth

Number of layers of decision nodes.
(2) $\operatorname{size}(T)-$ Size

Number of decision nodes.

Decision tree measures

Measures:

(1) depth (T) - Depth

Number of layers of decision nodes.
(2) $\operatorname{size}(T)-$ Size Number of decision nodes.
(3) $\operatorname{rank}(T)$ - Rank

Depth of largest full binary subtree.

Decision tree measures

Measures:

(1) depth (T) - Depth

Number of layers of decision nodes.
(2) $\operatorname{size}(T)-$ Size

Number of decision nodes.
(3) $\operatorname{rank}(T)$ - Rank

Depth of largest full binary subtree.
(9) $G(T)$-Guessing complexity

Most number of red edges in path.

Function measures

We can lift decision tree measures to function measures.

Function measures

We can lift decision tree measures to function measures.
(1) Let $f:\{0,1\}^{n} \rightarrow A$.
(2) Let $\mathrm{m} \in\{$ depth, size, $\operatorname{rank}, G\}$.
(3) $\mathrm{m}(f)=\min _{T: T \text { computes } f} \mathrm{~m}(T)$.

Function measures

We can lift decision tree measures to function measures.
(1) Let $f:\{0,1\}^{n} \rightarrow A$.
(2) Let $\mathrm{m} \in\{$ depth, size, rank, $G\}$.
(3) $\mathrm{m}(f)=\min _{T: T \text { computes } f} \mathrm{~m}(T)$.

f	AND	PARITY
T		
depth(f)	n	n
size (f)	n	$2^{n}-1$
$\operatorname{rank}(f)$	1	n
$G(f)$	1	n

Function measures

We can lift decision tree measures to function measures.
(1) Let $f:\{0,1\}^{n} \rightarrow A$.
(2) Let $\mathrm{m} \in\{$ depth, size, rank, $G\}$.
(3) $\mathrm{m}(f)=\min _{T: T \text { computes } f} \mathrm{~m}(T)$.

f	AND	PARITY
T		
depth(f)	n	n
size(f)	n	$2^{n}-1$
$\operatorname{rank}(f)$	1	n
$G(f)$	1	n

Randomized measures:

(1) Let \mathcal{T} be a family of decision trees. It approximately computes f, if $\forall x, \underset{T \in_{R} \mathcal{T}}{\mathbb{P}}[T(x)=f(x)] \geq \frac{2}{3}$.

Function measures

We can lift decision tree measures to function measures.
(1) Let $f:\{0,1\}^{n} \rightarrow A$.
(2) Let $\mathrm{m} \in\{$ depth, size, $\operatorname{rank}, G\}$.
(3) $\mathrm{m}(f)=\min _{T: T \text { computes } f} \mathrm{~m}(T)$.

f	AND	PARITY
T		
depth(f)	n	n
$\operatorname{size}(f)$	n	$2^{n}-1$
$\operatorname{rank}(f)$	1	n
$G(f)$	1	n

Randomized measures:

(1) Let \mathcal{T} be a family of decision trees. It approximately computes f, if

$$
\forall x, \underset{T \in \in_{R} \mathcal{T}}{\mathbb{P}}[T(x)=f(x)] \geq \frac{2}{3} .
$$

(2) Let $\mathrm{m} \in\{$ depth, size, rank,$G\}$, $\operatorname{rm}(f)=\min _{\mathcal{T} \text { approx. computes } f} \max _{T \in \mathcal{T}} \mathrm{~m}(f)$.

Function measures

We can lift decision tree measures to function measures.
(1) Let $f:\{0,1\}^{n} \rightarrow A$.
(2) Let $\mathrm{m} \in\{$ depth, size, $\operatorname{rank}, G\}$.
(3) $\mathrm{m}(f)=\min _{T: T \text { computes } f} \mathrm{~m}(T)$.

f	AND	PARITY
T		
depth(f)	n	n
size (f)	n	$2^{n}-1$
$\operatorname{rank}(f)$	1	n
$G(f)$	1	n

Randomized measures:

(1) Let \mathcal{T} be a family of decision trees.

It approximately computes f, if

$$
\forall x, \underset{T \in \in_{R} \mathcal{T}}{\mathbb{P}}[T(x)=f(x)] \geq \frac{2}{3} .
$$

(2) Let $\mathrm{m} \in\{$ depth, size, $\operatorname{rank}, G\}$, $\operatorname{rm}(f)=\min _{\mathcal{T} \text { approx. computes } f} \max _{T \in \mathcal{T}} \mathrm{~m}(f)$.
(3) Can make a big difference!

- $\exists f: \operatorname{rdepth}(f) \ll \operatorname{depth}(f)$ [SW86;ABB+17;MRS18]

Results

Our results:

Results

Our results:
(1) Guessing complexity equals rank.

- Answers open question from [LL16].

Results

Our results:
(1) Guessing complexity equals rank.

- Answers open question from [LL16].
(2) Separation between rank and randomized rank.
- $\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.

Results

Our results:
(1) Guessing complexity equals rank.

- Answers open question from [LL16].
(2) Separation between rank and randomized rank.
- $\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.

Results

Our results:

(1) Guessing complexity equals rank.

- Answers open question from [LL16].
(2) Separation between rank and randomized rank.
- $\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.

Results

AND-OR tree

Our results:

(1) Guessing complexity equals rank.

- Answers open question from [LL16].
(2) Separation between rank and randomized rank.
- $\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
- Proof via Prover-Delayer games. [PIOO]

Results

AND-OR tree

Our results:

(1) Guessing complexity equals rank.

- Answers open question from [LL16].
(2) Separation between rank and randomized rank.
- $\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
- Proof via Prover-Delayer games. [PIOO]
(3) Improve best-known construction for quantum query algorithms from decision trees.

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:

- $\mathcal{O}(\sqrt{G(T)} \operatorname{depth}(T))$-query algorithm.

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].
- Direct span program construction [BT20].
- Requires weight assignment to the edges.

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].
- Direct span program construction [BT20].
- Requires weight assignment to the edges.
- Open question: better weight assigments?

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].
- Direct span program construction [BT20].
- Requires weight assignment to the edges.
- Open question: better weight assigments?
- Time-efficient implementation [BTT21].

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].
- Direct span program construction [BT20].
- Requires weight assignment to the edges.
- Open question: better weight assigments?
- Time-efficient implementation [BTT21].
(2) Improved weights for the oracle identification
 problem [Tag21].

Decision tree to quantum algorithm - overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.
Prior work:
(1) $\mathcal{O}(\sqrt{G(T) \operatorname{depth}(T)})$-query algorithm.

- Iteratively use minimum finding to find first red edge [LL16].
- Direct span program construction [BT20].
- Requires weight assignment to the edges.
- Open question: better weight assigments?
- Time-efficient implementation [BTT21].

(2) Improved weights for the oracle identification problem [Tag21].
Our contribution: we provide the optimal weight assignment.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max _{P}\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max _{P}\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max _{P}\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max _{P}\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.
(2) Optimal \& constructive assignment.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max P\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.
(2) Optimal \& constructive assignment.
(3) $\Rightarrow \mathcal{O}(\sqrt{\operatorname{size}(T)})$-query algorithm.

Decision tree to quantum algorithm - optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.
(1) Construction of [BT20]: Let

- $W_{+}=\max _{P}\left\{\sum_{e \in P} \frac{1}{W_{e}}\right\}$.
- $W_{-}=\max _{P}\left\{\sum_{e \in \bar{P}} W_{e}\right\}$.
- $C=\sqrt{W_{+} W_{-}}$.
$\Rightarrow \mathcal{O}(C)$-query algorithm.
(2) Optimal \& constructive assignment.
(3) $\Rightarrow \mathcal{O}(\sqrt{\operatorname{size}(T)})$-query algorithm.
(© $\exists T: \sqrt{\operatorname{size}(T)} \ll \sqrt{G(T) \operatorname{depth}(T)}$.

Summary \& open questions

Summary: Three results related to decision trees:
(1) Guessing complexity equals rank $-G(T)=\operatorname{rank}(T)$.
(2) Separation rank vs. randomized rank $-\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
(3) Optimal weight assignment for span program construction.

Summary \& open questions

Summary: Three results related to decision trees:
(1) Guessing complexity equals rank $-G(T)=\operatorname{rank}(T)$.
(2) Separation rank vs. randomized rank $-\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
(3) Optimal weight assignment for span program construction.

Open questions:

(1) Polynomial relation rank vs. randomized $\operatorname{rank}, \operatorname{rank}(f)=\operatorname{poly}(\operatorname{rrank}(f))$?

Summary \& open questions

Summary: Three results related to decision trees:
(1) Guessing complexity equals rank $-G(T)=\operatorname{rank}(T)$.
(2) Separation rank vs. randomized rank $-\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
(3) Optimal weight assignment for span program construction.

Open questions:

(1) Polynomial relation rank vs. randomized rank, $\operatorname{rank}(f)=\operatorname{poly}(\operatorname{rrank}(f))$?
(2) Optimal weights for non-binary input case?

Summary \& open questions

Summary: Three results related to decision trees:
(1) Guessing complexity equals rank $-G(T)=\operatorname{rank}(T)$.
(2) Separation rank vs. randomized rank $-\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
(3) Optimal weight assignment for span program construction.

Open questions:

(1) Polynomial relation rank vs. randomized $\operatorname{rank}, \operatorname{rank}(f)=\operatorname{poly}(\operatorname{rrank}(f))$?
(2) Optimal weights for non-binary input case?
(3) Decision trees with more complicated queries, i.e. Hadamard queries?

Summary \& open questions

Summary: Three results related to decision trees:
(1) Guessing complexity equals rank $-G(T)=\operatorname{rank}(T)$.
(2) Separation rank vs. randomized rank $-\exists f: \operatorname{rrank}(f) \ll \operatorname{rank}(f)$.
(3) Optimal weight assignment for span program construction.

Open questions:

(1) Polynomial relation rank vs. randomized $\operatorname{rank}, \operatorname{rank}(f)=\operatorname{poly}(\operatorname{rrank}(f))$?
(2) Optimal weights for non-binary input case?
(3) Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention! arjan@cwi.nl

References

[ABB+17] Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs. Separations in query complexity based on pointer functions, 2017.
[BT20] Beigi, Taghavi. Quantum speed-up based on classical decision trees, 2020.
[BTT21] Beigi, Taghavi, Tajdini. Time and query optimal quantum algorithms based on decision trees, 2021.
[LL16] Lin, Lin. Upper bounds on quantum query complexity inspired by ElitzurVaidman bomb tester, 2016.
[MRS18] Mukhopadhyay, Radhakrishnan, Sanyal. Separation Between Deterministic and Randomized Query Complexity, 2018.
[PIOO] Pudlák, Impagliazzo. A lower bound for DLL algorithms for k-sat, 2000.
[SW86] Saks, Wigderson. Probabilistic Boolean Decision Trees and the Complexity of Evaluating Game Trees, 1986.
[Tag21] Taghavi. Simplified quantum algorithm for the oracle identification problem, 2021.

