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Decision trees

In general:

1 Rooted tree.

2 Every node has a decision rule.

3 Leafs are labeled by outputs.

For the purposes of this talk:

1 Input is a bit string x ∈ {0, 1}n,

2 Nodes are single bit queries.

3 Decision tree defines f : {0, 1}n → A.

Examples:

1 AND-decision tree.

2 PARITY -decision tree.
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Decision tree measures

Measures:

1 depth(T ) – Depth
Number of layers of decision nodes.

2 size(T ) – Size
Number of decision nodes.

3 rank(T ) – Rank
Depth of largest full binary subtree.

4 G (T ) – Guessing complexity
Most number of red edges in path.
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Function measures

We can lift decision tree measures to function measures.

1 Let f : {0, 1}n → A.

2 Let m ∈ {depth, size, rank,G}.
3 m(f ) = min

T :T computes f
m(T ).

f AND PARITY

T

x1

0 x2

0 x3

0 1

x1

x2 x2

0 1 1 0

depth(f ) n n
size(f ) n 2n − 1
rank(f ) 1 n

G (f ) 1 n

Randomized measures:

1 Let T be a family of decision trees.
It approximately computes f , if
∀x , P

T∈RT
[T (x) = f (x)] ≥ 2

3 .

2 Let m ∈ {depth, size, rank,G},
rm(f ) = min

T approx. computes f
max
T∈T

m(f ).

3 Can make a big difference!

∃f : rdepth(f )� depth(f )
[SW86;ABB+17;MRS18]
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Results

Our results:

1 Guessing complexity equals rank.

Answers open question from [LL16].

2 Separation between rank and
randomized rank.

∃f : rrank(f )� rank(f ).
Proof via Prover-Delayer games.
[PI00]

3 Improve best-known construction for
quantum query algorithms from
decision trees.

AND-OR tree

∨

∧ ∧

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x11x12x13x14x15x16

rrank(f ) = O(n0.753...) [SW86],
rank(f ) = Θ(n).
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Decision tree to quantum algorithm – overview

Goal: Take a decision tree T and construct a quantum query algorithm from it.

Prior work:
1 O(

√
G (T )depth(T ))-query algorithm.

Iteratively use minimum finding to find first red
edge [LL16].
Direct span program construction [BT20].

Requires weight assignment to the edges.
Open question: better weight assigments?

Time-efficient implementation [BTT21].

2 Improved weights for the oracle identification
problem [Tag21].

Our contribution: we provide the optimal weight assignment.
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0 1 0 1

0 1
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0 1 0 1
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√
G (T )depth(T ))-query algorithm.

Iteratively use minimum finding to find first red
edge [LL16].
Direct span program construction [BT20].

Requires weight assignment to the edges.
Open question: better weight assigments?

Time-efficient implementation [BTT21].

2 Improved weights for the oracle identification
problem [Tag21].

Our contribution: we provide the optimal weight assignment.
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Decision tree to quantum algorithm – optimal weight assignment

Goal: Take a decision tree and construct a quantum algorithm from it.

1 Construction of [BT20]: Let

W+ = maxP{
∑

e∈P
1
we
}.

W− = maxP{
∑

e∈P we}.
C =

√
W+W−.

⇒ O(C )-query algorithm.

2 Optimal & constructive assignment.

3 ⇒ O(
√

size(T ))-query algorithm.

4 ∃T :
√
size(T )�

√
G (T )depth(T ).
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CL−CR+

√
(CL−CR)2+4
2 .

⇒ C =
CL+CR+

√
(CL−CR)2+4
2 .
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Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f )� rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Polynomial relation rank vs. randomized rank, rank(f ) = poly(rrank(f ))?

2 Optimal weights for non-binary input case?

3 Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention!
arjan@cwi.nl

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8



Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f )� rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Polynomial relation rank vs. randomized rank, rank(f ) = poly(rrank(f ))?

2 Optimal weights for non-binary input case?

3 Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention!
arjan@cwi.nl

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8



Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f )� rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Polynomial relation rank vs. randomized rank, rank(f ) = poly(rrank(f ))?

2 Optimal weights for non-binary input case?

3 Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention!
arjan@cwi.nl

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8



Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f )� rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Polynomial relation rank vs. randomized rank, rank(f ) = poly(rrank(f ))?

2 Optimal weights for non-binary input case?

3 Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention!
arjan@cwi.nl

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8



Summary & open questions

Summary: Three results related to decision trees:

1 Guessing complexity equals rank – G (T ) = rank(T ).

2 Separation rank vs. randomized rank – ∃f : rrank(f )� rank(f ).

3 Optimal weight assignment for span program construction.

Open questions:

1 Polynomial relation rank vs. randomized rank, rank(f ) = poly(rrank(f ))?

2 Optimal weights for non-binary input case?

3 Decision trees with more complicated queries, i.e. Hadamard queries?

Thanks for your attention!
arjan@cwi.nl

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8



References

[ABB+17] Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs. Separations in query
complexity based on pointer functions, 2017.

[BT20] Beigi, Taghavi. Quantum speed-up based on classical decision trees, 2020.

[BTT21] Beigi, Taghavi, Tajdini. Time and query optimal quantum algorithms based
on decision trees, 2021.

[LL16] Lin, Lin. Upper bounds on quantum query complexity inspired by Elitzur-
Vaidman bomb tester, 2016.

[MRS18] Mukhopadhyay, Radhakrishnan, Sanyal. Separation Between Deterministic
and Randomized Query Complexity, 2018.

[PI00] Pudlák, Impagliazzo. A lower bound for DLL algorithms for k-sat, 2000.

[SW86] Saks, Wigderson. Probabilistic Boolean Decision Trees and the Complexity
of Evaluating Game Trees, 1986.

[Tag21] Taghavi. Simplified quantum algorithm for the oracle identification problem,
2021.

A.J. Cornelissen (QuSoft) Improved Query U.B.’s from Classical Decision Trees July 11th, 2022 8 / 8


