Quantum algorithms through composition of graphs

arXiv:2504.02115 and arXiv:2510.04973

Arjan Cornelissen¹

¹Simons Institute, University of California, Berkeley, California

October 28th, 2025

Setting:

- $O_{\times}: |j\rangle \mapsto (-1)^{x_j} |j\rangle.$

Setting:

- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$
- **3** $f: \mathcal{D} \to \{0, 1\}.$

Goal: Design algorithm A:

• Circuit: $U_T O_X U_{T-1} O_X \cdots O_X U_0$.

$$\mathbb{P}[b=f(x)] \geq rac{2}{3}$$
 $\psi_0
angle - U_0 - O_x - U_1 - O_x - U_7 - A = b$

Setting:

- **1** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$
- **3** $f: \mathcal{D} \to \{0, 1\}.$

Goal: Design algorithm A:

- $\forall x \in \mathcal{D}, \mathbb{P}[\mathcal{A}(O_x) = f(x)] \geq \frac{2}{3}.$
- \odot With minimal no. queries T.

$$\mathbb{P}[b=f(x)] \geq \frac{2}{3}$$

$$|\psi_0\rangle$$
 $-U_0$ $-O_x$ $-U_1$ $-O_x$ $-U_7$ $-Z$ $-U_7$

Setting:

- **1** $\mathcal{D} \subseteq \{0,1\}^n$.
- $O_{x}: |j\rangle \mapsto (-1)^{x_{j}} |j\rangle.$
- **3** $f: \mathcal{D} \to \{0, 1\}.$

Goal: Design algorithm A:

- $\forall x \in \mathcal{D}, \mathbb{P}[\mathcal{A}(O_x) = f(x)] \geq \frac{2}{3}.$
- \odot With minimal no. queries T.

Framework:

- Define a mathematical object.
- 2 Convert object into quantum algorithm.

$$\mathbb{P}[b=f(x)] \geq rac{2}{3}$$
 $|\psi_0
angle - U_0 - O_x - U_1 - O_x - U_7 - I_2 = b$

Setting:

- $O_{\mathsf{x}}: |j\rangle \mapsto (-1)^{\mathsf{x}_j} |j\rangle.$
- **③** $f: \mathcal{D} \to \{0,1\}.$

Goal: Design algorithm A:

- \odot With minimal no. queries T.

Framework:

- Define a mathematical object.
- Convert object into quantum algorithm.

Example: Boolean formula evaluation $f(x) = \underbrace{x_1 \land (x_2 \lor x_3) \lor (x_2 \land x_5) \lor x_3}_{\text{length } \ell}$

$$\mathbb{P}[b=f(x)] \geq rac{2}{3}$$
 $\psi_0 \setminus U_0 \cup O_x \cup U_1 \cup O_x \cup U_7 \cup O_x \cup U_7 \cup O_8 \cup$

Setting:

- $O_{x}: |j\rangle \mapsto (-1)^{x_{j}} |j\rangle.$
- **3** $f: \mathcal{D} \to \{0, 1\}.$

Goal: Design algorithm A:

- \odot With minimal no. queries T.

Framework:

- Define a mathematical object.
- 2 Convert object into quantum algorithm.

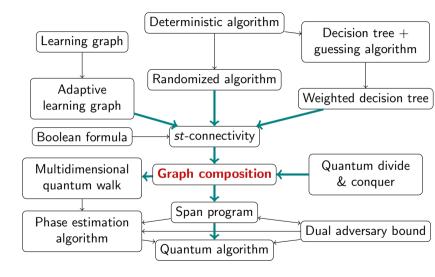
Example: Boolean formula evaluation $f(x) = \underbrace{x_1 \land (x_2 \lor x_3) \lor (x_2 \land x_5) \lor x_3}_{\text{length } \ell}$ [Rei11]

$$\mathbb{P}[b=f(x)] \geq rac{2}{3}$$
 $\psi_0
angle \underbrace{-U_0 - O_x - U_1 - O_x}_{T=O(\sqrt{\ell})} b$

Quantum algorithmic framework landscape

Overview:

- → Conversion between framework objects
- \rightarrow New relations [This work]



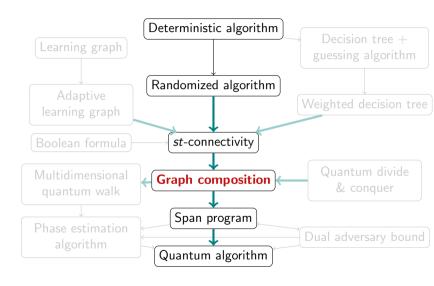
Quantum algorithmic framework landscape

Overview:

- → Conversion between framework objects
- → New relations [This work]

This talk:

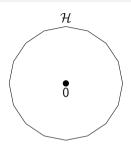
- Span programs
- @ Graph composition
- st-connectivity examples
- **9** Randomized \rightarrow st-connectivity



Four ingredients:

Four ingredients:

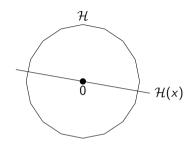
• Hilbert space: H.



Four ingredients:

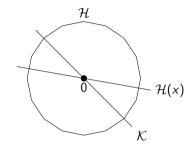
• Hilbert space: H.

2 Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.



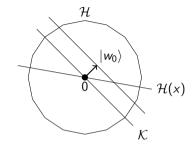
Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.



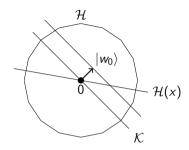
Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.



Four ingredients:

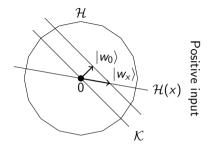
- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.



Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

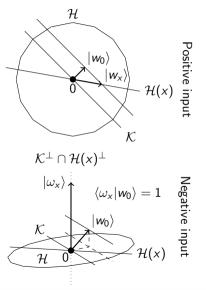
- **2** Positive inputs: $w_+(x, \mathcal{P}) = ||w_x||^2$.



Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

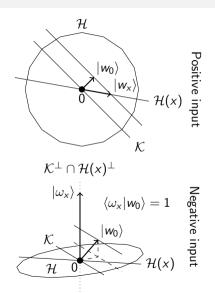
- **2** Positive inputs: $w_+(x, \mathcal{P}) = ||w_x||^2$.
- **1** Negative inputs: $w_{-}(x, \mathcal{P}) = ||\omega_{x}||^{2}$.



Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

- **2** Positive inputs: $w_+(x, \mathcal{P}) = ||w_x||^2$.
- **1** Negative inputs: $w_{-}(x, \mathcal{P}) = ||\omega_{x}||^{2}$.
- $C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$



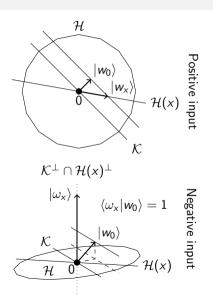
Four ingredients:

- Hilbert space: H.
- **1** Input-dependent subspace: $\forall x \in \mathcal{D}, \mathcal{H}(x) \subseteq \mathcal{H}$.
- **1** Input-independent subspace: $\mathcal{K} \subseteq \mathcal{H}$.
- **1** Initial vector: $|w_0\rangle \in \mathcal{K}^{\perp}$.

Computes function: $f: \mathcal{D} \rightarrow \{0,1\}$

- **2** Positive inputs: $w_+(x, \mathcal{P}) = ||w_x||^2$.
- **1** Negative inputs: $w_{-}(x, \mathcal{P}) = ||\omega_{x}||^{2}$.
- $C(\mathcal{P}) = \sqrt{\max_{x \in f^{-1}(0)} w_{-}(x, \mathcal{P}) \cdot \max_{x \in f^{-1}(1)} w_{+}(x, \mathcal{P})}.$

Thm: Algorithm with $O(C(\mathcal{P}))$ queries to $2\Pi_{\mathcal{H}(x)} - I$.



1 Scalar multiplication ($\alpha > 0$):

$$\begin{cases}
\mathcal{P} & \alpha \mathcal{P} \\
\vdots & \vdots \\
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
|w_0\rangle
\end{cases} \mapsto \begin{cases}
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
\sqrt{\alpha} |w_0\rangle
\end{cases}.$$

- Scalar multiplication ($\alpha > 0$):
 - $w_+(x,\alpha\mathcal{P}) = \alpha w_+(x,\mathcal{P})$
 - $w_{-}(x,\alpha\mathcal{P}) = \frac{w_{-}(x,\mathcal{P})}{\alpha}.$

$$\begin{cases}
\mathcal{P} & \alpha \mathcal{P} \\
\vdots & \vdots \\
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
|w_0\rangle
\end{cases}
\mapsto
\begin{cases}
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
\sqrt{\alpha} |w_0\rangle
\end{cases}.$$

- **1** Scalar multiplication ($\alpha > 0$):
 - $\mathbf{0} \ \mathbf{w}_{+}(\mathbf{x}, \alpha \mathcal{P}) = \alpha \mathbf{w}_{+}(\mathbf{x}, \mathcal{P})$
 - $w_{-}(x,\alpha\mathcal{P}) = \frac{w_{-}(x,\mathcal{P})}{2}$.
- 2 Trivial span program (query x_i):

 - $\mathcal{H} = \mathbb{C}$ $\mathcal{H}(x) = \begin{cases} \mathbb{C}, & \text{if } x_j = 1, \\ \{0\}, & \text{otherwise.} \end{cases}$ $\mathcal{K} = \{0\}.$

 - $\langle w_0 \rangle = 1.$

$$\begin{cases}
\mathcal{P} & \alpha \mathcal{P} \\
\vdots & \vdots \\
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
|w_0\rangle
\end{cases} \mapsto \begin{cases}
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
\sqrt{\alpha} |w_0\rangle
\end{cases}.$$

$$\xrightarrow{|w_0\rangle} \mathbb{C}$$

- **1** Scalar multiplication ($\alpha > 0$):
 - $\mathbf{0} \ \mathbf{w}_{+}(\mathbf{x}, \alpha \mathcal{P}) = \alpha \mathbf{w}_{+}(\mathbf{x}, \mathcal{P})$
 - $w_{-}(x,\alpha\mathcal{P}) = \frac{w_{-}(x,\mathcal{P})}{2}$.
- 2 Trivial span program (query x_i):

 - $\mathcal{H} = \mathbb{C}$ $\mathcal{H}(x) = \begin{cases} \mathbb{C}, & \text{if } x_j = 1, \\ \{0\}, & \text{otherwise.} \end{cases}$
 - **3** $\mathcal{K} = \{0\}.$
 - $|w_0\rangle = 1.$

Then.

- For $x_i = 1$: $w_+(x, \mathcal{P}) = 1$.
- ② For $x_i = 0$: $w_-(x, \mathcal{P}) = 1$.

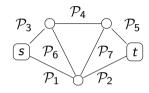
$$\Rightarrow C(x_j) = 1.$$

$$\begin{cases}
\mathcal{P} & \alpha \mathcal{P} \\
\vdots & \vdots \\
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
|w_0\rangle
\end{cases} \mapsto \begin{cases}
\mathcal{H} \\
\mathcal{H}(x) \\
\mathcal{K} \\
\sqrt{\alpha} |w_0\rangle
\end{cases}.$$

$$\xrightarrow{|w_0\rangle} \emptyset$$

Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .



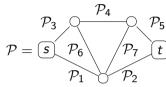
Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition: Span program \mathcal{P} , such that

1 \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_j} .

Graph composition:

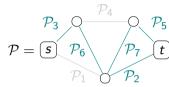


Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition: Span program \mathcal{P} , such that

• \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .

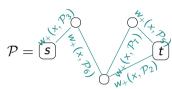


Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition: Span program \mathcal{P} , such that

• \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .

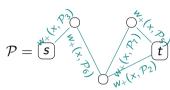


Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition: Span program \mathcal{P} , such that

- **1** \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.



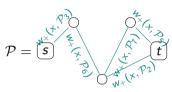
$$w_+(x,\mathcal{P}) = R_{G,s,t,r^+}.$$

Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

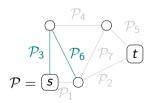
Graph composition: Span program \mathcal{P} , such that

- **1** \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative input:

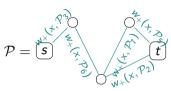


Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

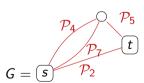
Graph composition: Span program \mathcal{P} , such that

- **1** \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.



$$w_+(x, \mathcal{P}) = R_{G,s,t,r^+}.$$

Negative input:

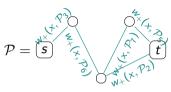


Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

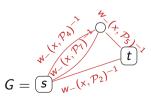
Graph composition: Span program \mathcal{P} , such that

- \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative input:



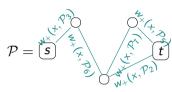
Graph composition [This work]

Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

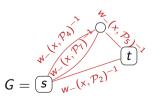
Graph composition: Span program \mathcal{P} , such that

- \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative input:



$$w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$$

Graph composition [This work]

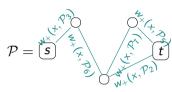
Ingredients:

- Undirected graph G = (V, E).
- ② Source and target vertices $s, t \in V$.
- **3** Edge span programs $(\mathcal{P}_e)_{e \in E}$ on \mathcal{D} .

Graph composition: Span program \mathcal{P} , such that

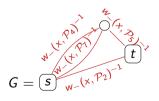
- \mathcal{P} computes whether s and t are connected by a path $e_1, \ldots e_k$, such that x is positive for all \mathcal{P}_{e_i} .
- ② $w_+(x, \mathcal{P}) = R_{s,t,r^+}^{eff}$ with $r_+(e) = w_+(x, \mathcal{P}_e)$.

Remark: Recovers *st*-connectivity with just trivial span programs. [BR12,JK17,JJKP18]



$$w_{+}(x, \mathcal{P}) = R_{G,s,t,r^{+}}.$$

Negative input:



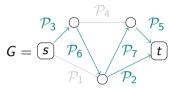
$$w_{-}(x,\mathcal{P}) = R_{G,s,t,r^{-}}^{-1}$$
.

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

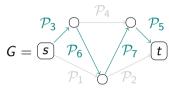
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



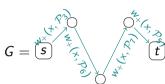
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



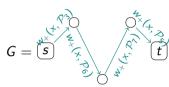
Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



Theorem: For all $x \in \mathcal{D}$,

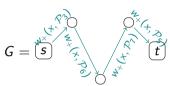
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



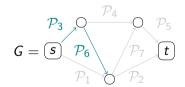
$$w_+(x,\mathcal{P}) \leq \sum_{e \in P} w_+(x,\mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

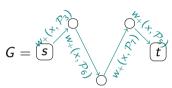


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

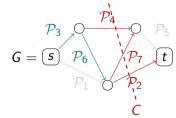


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- 2 Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_e)$.

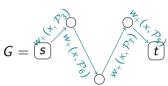


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

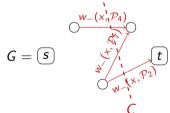


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.

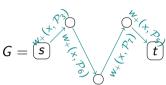


$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:

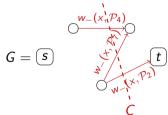


Theorem: For all $x \in \mathcal{D}$,

- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- ② Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_{e})$.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



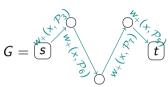
$$w_{-}(x,\mathcal{P}) \leq \sum_{e \in C} w_{-}(x,\mathcal{P}_e).$$

Theorem: For all $x \in \mathcal{D}$,

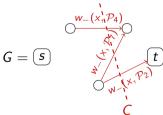
- Let P be a path from s to t: $w_+(x, \mathcal{P}) \leq \sum_{e \in P} w_+(x, \mathcal{P}_e)$.
- 2 Let C be a cut between s and t: $w_{-}(x, \mathcal{P}) \leq \sum_{e \in C} w_{-}(x, \mathcal{P}_e)$.

Properties:

- Simpler (less-powerful) version.
- Still powerful enough for many applications.



$$w_{+}(x, \mathcal{P}) \leq \sum_{e \in P} w_{+}(x, \mathcal{P}_{e}).$$
Negative input:



$$w_{-}(x,\mathcal{P}) \leq \sum_{e \in C} w_{-}(x,\mathcal{P}_e).$$

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases} 1, & \text{if } |x| \ge 1, \\ 0, & \text{if } |x| = 0. \end{cases}
\end{array}$$

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathrm{OR}_n(x) = \begin{cases}
1, & \text{if } |x| \ge 1, \\
0, & \text{if } |x| = 0.
\end{cases}$$

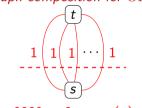
The OR-function:

- $\begin{array}{l}
 \mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
 \mathrm{OR}_n(x) = \begin{cases}
 1, & \text{if } |x| \ge 1, \\
 0, & \text{if } |x| = 0.
 \end{cases}$
- $w_{+}(x) \leq 1.$

$$x = 0010 \cdots 0 \Rightarrow w_+(x) \leq 1$$

The OR-function:

- $\begin{array}{l}
 \mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
 \mathbf{OR}_n(x) = \begin{cases}
 1, & \text{if } |x| \ge 1, \\
 0, & \text{if } |x| = 0.
 \end{cases}$
- $w_{+}(x) \leq 1.$
- **③** $w_{-}(x)$ ≤ n.

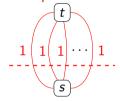


$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathbf{OR}_n(x) = \begin{cases}
1, & \text{if } |x| \ge 1, \\
0, & \text{if } |x| = 0.
\end{cases}$$

- $w_{+}(x) \leq 1.$
- **③** $w_{-}(x) ≤ n$.
- $C(\mathcal{P}) \leq \sqrt{n}.$

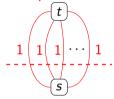


$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

The OR-function:

$$\begin{array}{l}
\mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
\mathbf{OR}_n(x) = \begin{cases}
1, & \text{if } |x| \ge 1, \\
0, & \text{if } |x| = 0.
\end{cases}$$

- $w_{+}(x) \leq 1.$
- **③** $w_{-}(x)$ ≤ n.
- $C(\mathcal{P}) \leq \sqrt{n}.$
- $\mathbf{0} \Rightarrow \mathsf{Q}(\mathrm{OR}_n) \in \mathcal{O}(\sqrt{n}).$

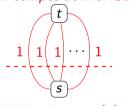


$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

The OR-function:

- $\begin{array}{l}
 \mathbf{OR}_n : \{0,1\}^n \to \{0,1\} \\
 \mathbf{OR}_n(x) = \begin{cases}
 1, & \text{if } |x| \ge 1, \\
 0, & \text{if } |x| = 0.
 \end{cases}$
- $w_{+}(x) \leq 1.$
- **③** $w_{-}(x)$ ≤ n.
- $C(\mathcal{P}) \leq \sqrt{n}.$
- $\mathbf{0} \Rightarrow \mathsf{Q}(\mathrm{OR}_n) \in O(\sqrt{n}).$

Quadratic speed-up for search.



$$x = 0000 \cdots 0 \Rightarrow w_{-}(x) = n$$

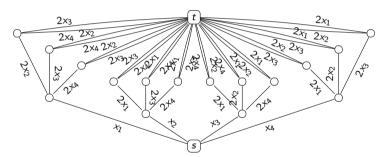
The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \text{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\text{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

Graph composition for Th_4^3 :

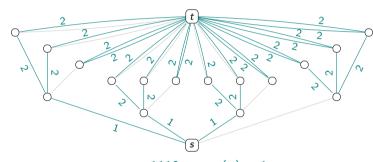


The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

Graph composition for Th₄³:



$$x = 1110 \Rightarrow w_+(x) = 1$$

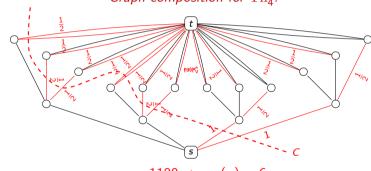
The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \text{Th}_{n}^{k} : \{0,1\}^{n} \to \{0,1\} \\
\text{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

Graph composition for Th_{4}^{3} :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

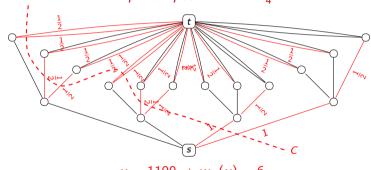
$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

Graph composition for Th_4^3 :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

$$\begin{array}{l}
\mathbf{O} \quad \operatorname{Th}_{n}^{k} : \{0, 1\}^{n} \to \{0, 1\} \\
\operatorname{Th}_{n}^{k}(x) = \begin{cases} 1, & \text{if } |x| \ge k, \\ 0, & \text{if } |x| < k. \end{cases}
\end{array}$$

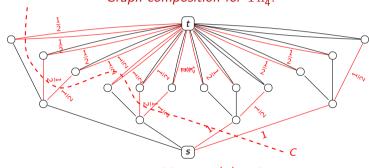
$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

$$\Rightarrow \mathsf{Q}(\mathrm{Th}_n^k) \in \\ O(\sqrt{k(n-k+1)}).$$

Graph composition for Th_4^3 :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

$$w_+(x) = \frac{1}{|x|-k+1}$$

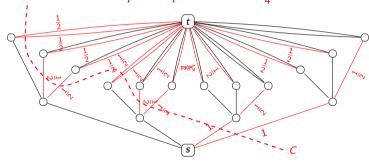
$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

$$\Rightarrow \mathsf{Q}(\mathrm{Th}_n^k) \in \\ O(\sqrt{k(n-k+1)}).$$

Known to be optimal!

Graph composition for Th_{4}^{3} :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

The threshold function: $(k \in [n])$

$$w_+(x) = \frac{1}{|x|-k+1}$$

$$w_{-}(x) = \frac{k(n-k+1)}{k-|x|}$$

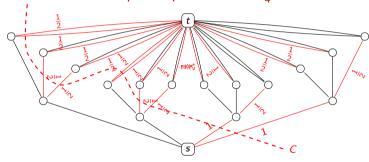
$$C(\mathcal{P}) = \sqrt{k(n-k+1)}.$$

$$\Rightarrow \mathsf{Q}(\mathrm{Th}_n^k) \in \\ O(\sqrt{k(n-k+1)}).$$

Known to be optimal!

Remark: With k = n/2, it also solves gapped majority in O(1) queries.

Graph composition for Th_4^3 :



$$x = 1100 \Rightarrow w_{-}(x) = 6$$

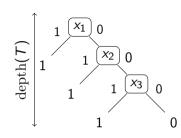
Classical algorithms o st-connectivity

Deterministic o st-connectivity:

Classical algorithms o st-connectivity

Deterministic o st-connectivity:

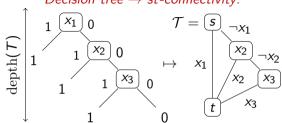
lacktriangle Decision tree T.



$Deterministic \rightarrow st\text{-}connectivity:$

- lacktriangle Decision tree T.
- Conversion into st-connectivity.

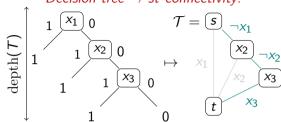
Decision tree \rightarrow st-connectivity:



$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- 2 Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

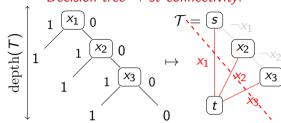
Decision tree \rightarrow *st-connectivity:*



$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- 2 Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

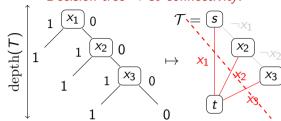
Decision tree \rightarrow st-connectivity:



$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

Decision tree \rightarrow st-connectivity:



$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- 2 Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

Randomized → *st-connectivity*: (sketch)

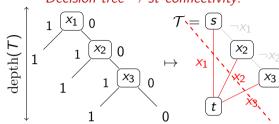
$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- 2 Conversion into st-connectivity.
- $w_+(x,T) \leq \operatorname{depth}(T).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

Randomized → *st-connectivity*: (sketch)

• Decision trees $\{T_j\}_{j=1}^N$ Probability distribution $\{p_j\}_{j=1}^N$.

Decision tree \rightarrow *st-connectivity:*



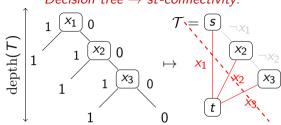
$Deterministic \rightarrow st$ -connectivity:

- lacktriangle Decision tree T.
- Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

Randomized → *st-connectivity*: (sketch)

- Decision trees $\{T_j\}_{j=1}^N$ Probability distribution $\{p_j\}_{j=1}^N$.
- **Wlog:** uniform distribution.⇒ gapped majority on N bits.

Decision tree \rightarrow *st-connectivity:*



Classical algorithms o st-connectivity

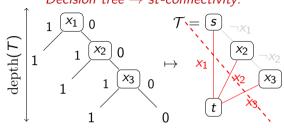
$Deterministic \rightarrow st\text{-}connectivity:$

- Decision tree T.
- Conversion into st-connectivity.
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

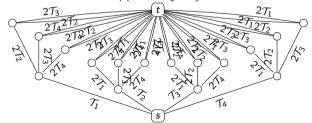
Randomized → *st-connectivity*: (sketch)

- Decision trees $\{T_j\}_{j=1}^N$ Probability distribution $\{p_j\}_{j=1}^N$.
- Wlog: uniform distribution.⇒ gapped majority on N bits.

Decision tree \rightarrow st-connectivity:



Gapped majority:



Classical algorithms o st-connectivity

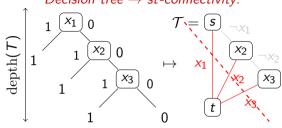
$Deterministic \rightarrow st\text{-}connectivity:$

- Decision tree T.
- Conversion into st-connectivity.
- $w_+(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$
- $w_{-}(x,\mathcal{T}) \leq \operatorname{depth}(\mathcal{T}).$

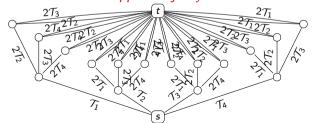
Randomized → *st-connectivity*: (sketch)

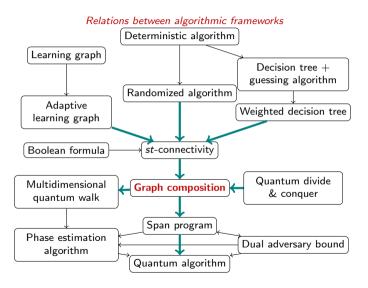
- Decision trees $\{T_j\}_{j=1}^N$ Probability distribution $\{p_j\}_{j=1}^N$.
- Wlog: uniform distribution.⇒ gapped majority on N bits.
- $(\mathcal{P}) \in O(1 \cdot \max_i \operatorname{depth}(T_i)).$

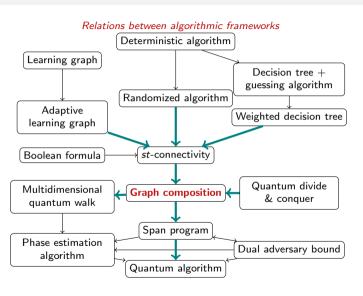
Decision tree \rightarrow *st-connectivity:*



Gapped majority:

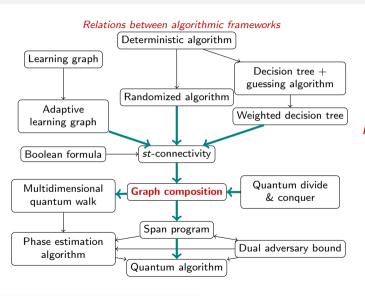






In this talk:

- Span programs
- @ Graph composition
- Examples
- Randomized \rightarrow *st*-connectivity.

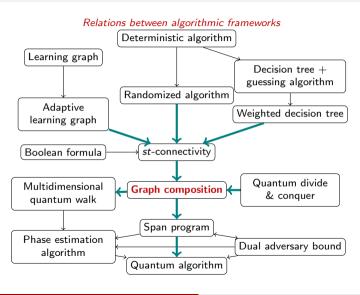


In this talk:

- Span programs
- @ Graph composition
- Examples
- **4** Randomized \rightarrow *st*-connectivity.

In the papers:

- Time-efficient implementation of graph composition
- Generalization to switches
- Quantum walks frameworks
- More examples



In this talk:

- Span programs
- @ Graph composition
- Examples
- **1** Randomized \rightarrow *st*-connectivity.

In the papers:

- Time-efficient implementation of graph composition
- Generalization to switches
- Quantum walks frameworks
- More examples

Open question:

Limitations of st-connectivity?

Thanks!

Thanks for your attention! ajcornelissen@outlook.com