

Prior work on the (full/sparse) triangle finding problem

Figure 1: Graphical depiction of the historical overview of triangle finding algorithms

$\operatorname{Author}(s)$	Year	Title	Query complexity	
Szegedy	2003	On the query complexity of	$\widetilde{\mathcal{O}}(n^{10/7})$	
		finding triangles in graphs		
Magniez, Santha, Szegedy	2003	Algorithms for quantum	$\widetilde{\mathcal{O}}(n^{13/10})$	
		triangle finding		
Belovs	2011	Span programs for functions	$\widetilde{O}(m^{35/27})$	
		with constant 1-sized certificates	$\bigcup(n')$	
Lee, Magniez, Santha	2012	Improved quantum query		
		algorithms for triangle finding	$\widetilde{\mathcal{O}}(n^{9/7})$	
		and associativity testing		
Jerrey, Kothari, Magniez	2012	Nested quantum walks with	$\widetilde{O}(m^{9/7})$	
		quantum data structures	$\bigcup(n^{*+})$	
	2014	Improved quantum algorithm		
Le Gall		for triangle finding via	$\widetilde{\mathcal{O}}(n^{5/4})$	
		combinatorial arguments		

Table 1: Historical overview of algorithms for *full* triangle finding, i.e., without assumptions on the number of edges.

Upper bound on the number of edges present in the graph

Author(s)	Year	Title	Query complexity	
Buhrman, Dürr, Heiligman, Høyer, Magniez, Santha, de Wolf	2000	Quantum algorithms for element distinctness	$\mathcal{O}(n+\sqrt{nm})$	
Le Gall, Nakajima	2015	Quantum triangle finding in sparse graphs	$\begin{cases} \mathcal{O}(n+\sqrt{nm}), & \text{if } 0 \le m \le n^{7/6} \\ \widetilde{\mathcal{O}}(nm^{1/14}), & \text{if } n^{7/6} \le m \le n^{7/5} \\ \widetilde{\mathcal{O}}(n^{1/6}m^{2/3}), & \text{if } n^{7/5} \le m \le n^{3/2} \\ \widetilde{\mathcal{O}}(n^{23/30}m^{4/15}), & \text{if } n^{3/2} \le m \le n^{13/8} \\ \widetilde{\mathcal{O}}(n^{59/60}m^{2/15}), & \text{if } n^{13/8} \le m \le n^2 \end{cases}$	
Carette, Laurière, Magniez	2016	Extended learning graphs for triangle finding	$\widetilde{\mathcal{O}}(n^{11/12}m^{1/6}), \text{ if } m \ge n^{5/4}$	

Table 2: Historical overview of algorithms for *sparse* triangle finding, i.e., with assumptions on the number of edges.

Author(s)	Year	Title	Parameter	Query complexity
Magniez, Santha, Szegedy	2003	Algorithms for quantum triangle finding	None	$\mathcal{O}(n^{2/3})$
Jeffery, Kothari, Magniez	2012	Improving quantum query complexity of boolean matrix multiplication using graph collision	Number of non-edges in the graph, ℓ	$\widetilde{\mathcal{O}}(\sqrt{n}+\sqrt{\ell})$
Belovs	2012	Learning graph-based quantum algorithm for k -distinctness	Size of the largest independent set, α	$\mathcal{O}(\sqrt{n}\alpha^{1/6})$
Gavinsky, Ito 20	9019	A quantum query	Maximum total degree of any independent set, α^*	$\widetilde{\mathcal{O}}(\sqrt{n}+\sqrt{\alpha^*})$
	2012	collision problem	Random graphs with each edge independently being present with fixed probability	$\widetilde{\mathcal{O}}(\sqrt{n})$
Ambainis, Balodis,		Parametrized quantum	Treewidth, t	$\mathcal{O}(\sqrt{n}t^{1/6})$
Iraids, Ozols, Smotrovs	2013	query complexity of graph collision	α^{**} – definition below	$\mathcal{O}(\sqrt{n} + \sqrt{\alpha^{**}})$

Table 3: Overview of (parametrized) algorithms for graph collision, mainly based on Ambainis' survey presented in the paper stated above.

$$\alpha^{**} = \min_{\substack{VC \subseteq V \\ VC - \text{vertex cover of } G}} \max_{\substack{I \subseteq VC \\ I - \text{independent set}}} \sum_{v \in I} \deg(v)$$