Prior work on the (full/sparse) triangle finding problem

Figure 1: Graphical depiction of the historical overview of triangle finding algorithms

Author(s)	Year	Title	Query complexity
Szegedy	2003	On the query complexity of finding triangles in graphs	$\widetilde{\mathcal{O}}\left(n^{10 / 7}\right)$
Magniez, Santha, Szegedy	2003	Algorithms for quantum triangle finding	$\widetilde{\mathcal{O}}\left(n^{13 / 10}\right)$
Belovs	2011	Span programs for functions with constant 1-sized certificates	$\widetilde{\mathcal{O}}\left(n^{35 / 27}\right)$
Lee, Magniez, Santha	2012	Improved quantum query algorithms for triangle finding and associativity testing	$\widetilde{\mathcal{O}}\left(n^{9 / 7}\right)$
Jerrey, Kothari, Magniez	2012	Nested quantum walks with quantum data structures	$\widetilde{\mathcal{O}}\left(n^{9 / 7}\right)$
Le Gall	2014	Improved quantum algorithm for triangle finding via combinatorial arguments	$\widetilde{\mathcal{O}}\left(n^{5 / 4}\right)$

Table 1: Historical overview of algorithms for full triangle finding, i.e., without assumptions on the number of edges.

Author(s)	Year	Title	Query complexity
Buhrman, Dürr, Heiligman, Høyer, Magniez, Santha, de Wolf	2000	Quantum algorithms for element distinctness	$\mathcal{O}(n+\sqrt{n m})$
Le Gall, Nakajima	2015	Quantum triangle finding in sparse graphs	$\begin{cases}\widetilde{\mathcal{O}}(n+\sqrt{n m}), & \text { if } 0 \leq m \leq n^{7 / 6} \\ \widetilde{\mathcal{O}}\left(n m^{1 / 14}\right), & \text { if } n^{7 / 6} \leq m \leq n^{7 / 5} \\ \widetilde{\mathcal{O}}\left(n^{1 / 6} m^{2 / 3}\right), & \text { if } n^{7 / 5} \leq m \leq n^{3 / 2} \\ \widetilde{\mathcal{O}}\left(n^{23 / 30} m^{4 / 15}\right), & \text { if } n^{3 / 2} \leq m \leq n^{13 / 8} \\ \widetilde{\mathcal{O}}\left(n^{59 / 60} m^{2 / 15}\right), & \text { if } n^{13 / 8} \leq m \leq n^{2}\end{cases}$
Carette, Laurière, Magniez	2016	Extended learning graphs for triangle finding	$\widetilde{\mathcal{O}}\left(n^{11 / 12} m^{1 / 6}\right)$, if $m \geq n^{5 / 4}$

Table 2: Historical overview of algorithms for sparse triangle finding, i.e., with assumptions on the number of edges.

Author(s)	Year	Title	Parameter	Query complexity
Magniez, Santha, Szegedy	2003	Algorithms for quantum triangle finding	None	$\mathcal{O}\left(n^{2 / 3}\right)$
Jeffery, Kothari, Magniez	2012	Improving quantum query complexity of boolean matrix multiplication using graph collision	Number of non-edges in the graph, ℓ	$\widetilde{\mathcal{O}}(\sqrt{n}+\sqrt{\ell})$
Belovs	2012	Learning graph-based quantum algorithm for k-distinctness	Size of the largest independent set, α	$\mathcal{O}\left(\sqrt{n} \alpha^{1 / 6}\right)$
Gavinsky, Ito	2012	A quantum query algorithm for the graph collision problem	Maximum total degree of any independent set, α^{*}	$\widetilde{\mathcal{O}}\left(\sqrt{n}+\sqrt{\alpha^{*}}\right)$
			Random graphs with each edge independently being present with fixed probability	$\widetilde{\mathcal{O}}(\sqrt{n})$
Ambainis, Balodis, Iraids, Ozols, Smotrovs	2013	Parametrized quantum query complexity of graph collision	Treewidth, t	$\mathcal{O}\left(\sqrt{n} t^{1 / 6}\right)$
			$\alpha^{* *}$ - definition below	$\mathcal{O}\left(\sqrt{n}+\sqrt{\alpha^{* *}}\right)$

Table 3: Overview of (parametrized) algorithms for graph collision, mainly based on Ambainis' survey presented in the paper stated above.

$$
\alpha^{* *}=\min _{\substack{V C \subseteq V \\ V C \text {-vertex } \subseteq \text { cover of } G}} \max _{\substack{I \subseteq V C \\ I-\text { independent set }}} \sum_{v \in I} \operatorname{deg}(v)
$$

